論文の概要: A Comprehensive Analysis of Pegasus Spyware and Its Implications for Digital Privacy and Security
- arxiv url: http://arxiv.org/abs/2404.19677v1
- Date: Tue, 30 Apr 2024 16:10:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 13:36:16.113011
- Title: A Comprehensive Analysis of Pegasus Spyware and Its Implications for Digital Privacy and Security
- Title(参考訳): ペガサススパイウェアの包括的分析とデジタルプライバシとセキュリティへの応用
- Authors: Karwan Kareem,
- Abstract要約: 本稿では,ペガサスのスパイウェアとそのデジタルプライバシとセキュリティへの影響を包括的に分析する。
この研究は、このスパイウェアの技術的な側面、その展開方法、使用に関する論争を強調している。
本稿では,脅威を軽減し,ユーザを侵略的な監視技術から保護するための潜在的な解決策を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper comprehensively analyzes the Pegasus spyware and its implications for digital privacy and security. The Israeli cyber intelligence company NSO Group's Pegasus has gained recognition as a potent surveillance tool capable of hacking into smartphones and extracting data without the user's knowledge [49], [50]. The research emphasizes the technical aspects of this spyware, its deployment methods, and the controversies surrounding its use. The research also emphasizes the growing worries surrounding digital privacy and security as a result of the prevalent use of advanced spyware. By delving into legal, ethical, and policy issues, the objective of this study is to deliver a holistic understanding of the challenges posed by Pegasus and similar spyware tools. Through a comprehensive examination of the subject, the paper presents potential solutions to mitigate the threats and protect users from invasive surveillance techniques.
- Abstract(参考訳): 本稿では,ペガサスのスパイウェアとそのデジタルプライバシとセキュリティへの影響を包括的に分析する。
イスラエルのサイバーインテリジェンス会社NSO GroupのPegasus(ペガサス)は、スマートフォンに侵入し、ユーザーの知らないままデータを抽出する強力な監視ツールとして認知されている。
この研究は、このスパイウェアの技術的な側面、その展開方法、使用をめぐる論争を強調している。
この研究はまた、高度なスパイウェアが普及した結果、デジタルプライバシとセキュリティに関する懸念が高まっていることも強調している。
この研究の目的は、法的、倫理的、政策的な問題を掘り下げることによって、ペガサスや同様のスパイウェアツールがもたらす課題の全体的理解を提供することである。
本論文は,包括的調査を通じて,脅威を軽減し,ユーザを侵略的な監視技術から保護する潜在的な解決策を提案する。
関連論文リスト
- Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures [50.987594546912725]
AIのプライバシと説明可能性に関する研究が増えているにもかかわらず、プライバシを保存するモデル説明にはほとんど注意が払われていない。
本稿では,モデル説明に対するプライバシ攻撃とその対策に関する,最初の徹底的な調査を紹介する。
論文 参考訳(メタデータ) (2024-03-31T12:44:48Z) - Information Security and Privacy in the Digital World: Some Selected Topics [1.3592237162158234]
スパイラルで偽の情報を識別し、機密データのプライバシーを保護する上で、新たな課題に直面している。
この本は、コンピュータと通信における暗号とセキュリティの分野における最先端の研究成果をいくつか紹介する。
論文 参考訳(メタデータ) (2024-03-30T03:52:58Z) - Progress in Privacy Protection: A Review of Privacy Preserving
Techniques in Recommender Systems, Edge Computing, and Cloud Computing [2.9158689853305693]
この調査は、モバイルクラウドソーシング、エッジコンピューティング、レコメンデーションシステムといった分野に焦点を当てている。
プライバシとデータセキュリティに特に重点を置いて、これらの相互接続領域における最新のトレンドを探求している。
論文 参考訳(メタデータ) (2024-01-20T19:32:56Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - NLP-Based Techniques for Cyber Threat Intelligence [13.958337678497163]
脅威知能の文脈で適用されたNLP技術の概要について概説する。
デジタル資産を保護するための主要なツールとして、CTIの基本的定義と原則を説明することから始まる。
その後、WebソースからのCTIデータクローリングのためのNLPベースのテクニック、CTIデータ分析、サイバーセキュリティデータからの関係抽出、CTIの共有とコラボレーション、CTIのセキュリティ脅威の徹底的な調査を行う。
論文 参考訳(メタデータ) (2023-11-15T09:23:33Z) - Critical Analysis and Countermeasures Tactics, Techniques and Procedures (TTPs) that targeting civilians: A case study On Pegasus [0.0]
本稿では,ペガサスウイルスによるジャーナリストや活動家の標的について検討する。
サイバーセキュリティポリシーに対するこれらの攻撃による遠い影響を検査する。
企業がサイバー攻撃の危険性を減らすために使う、最も重要な戦術をいくつか説明します。
論文 参考訳(メタデータ) (2023-10-01T19:28:03Z) - A Comparative Analysis Between SciTokens, Verifiable Credentials, and
Smart Contracts: Novel Approaches for Authentication and Secure Access to
Scientific Data [0.6906005491572401]
機密情報を安全に管理し、交換することは、科学とサイバーセキュリティのコミュニティにとって最重要課題である。
本研究では,科学的データへのアクセスを認証し,確保するための3つの新しいアプローチの比較分析を行った。
論文 参考訳(メタデータ) (2023-08-28T18:01:37Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。