論文の概要: A Framework for Leveraging Human Computation Gaming to Enhance Knowledge Graphs for Accuracy Critical Generative AI Applications
- arxiv url: http://arxiv.org/abs/2404.19729v1
- Date: Tue, 30 Apr 2024 17:24:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 13:16:41.294519
- Title: A Framework for Leveraging Human Computation Gaming to Enhance Knowledge Graphs for Accuracy Critical Generative AI Applications
- Title(参考訳): 正確で重要な生成AIアプリケーションのための知識グラフの強化のためのヒューマン計算ゲーミングの活用フレームワーク
- Authors: Steph Buongiorno, Corey Clark,
- Abstract要約: 本稿では,GAME-KGフレームワークについて紹介する。
GAME-KGは、ゲームを通じて収集されたクラウドソースフィードバックを使用することで、KGの明示的および暗黙的な接続を変更するための連合的なアプローチである。
最初の結果は、GAME-KGがKGの強化に有効なフレームワークになり得ることを示唆し、同時に人間によって検証された構造化事実の説明可能なセットを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: External knowledge graphs (KGs) can be used to augment large language models (LLMs), while simultaneously providing an explainable knowledge base of facts that can be inspected by a human. This approach may be particularly valuable in domains where explainability is critical, like human trafficking data analysis. However, creating KGs can pose challenges. KGs parsed from documents may comprise explicit connections (those directly stated by a document) but miss implicit connections (those obvious to a human although not directly stated). To address these challenges, this preliminary research introduces the GAME-KG framework, standing for "Gaming for Augmenting Metadata and Enhancing Knowledge Graphs." GAME-KG is a federated approach to modifying explicit as well as implicit connections in KGs by using crowdsourced feedback collected through video games. GAME-KG is shown through two demonstrations: a Unity test scenario from Dark Shadows, a video game that collects feedback on KGs parsed from US Department of Justice (DOJ) Press Releases on human trafficking, and a following experiment where OpenAI's GPT-4 is prompted to answer questions based on a modified and unmodified KG. Initial results suggest that GAME-KG can be an effective framework for enhancing KGs, while simultaneously providing an explainable set of structured facts verified by humans.
- Abstract(参考訳): 外部知識グラフ(KGs)は、大きな言語モデル(LLMs)の拡張に使用することができ、同時に人間によって検査できる事実の説明可能な知識ベースを提供する。
このアプローチは、人間のトラフィックデータ分析のように、説明責任が重要である領域で特に有用である。
しかし、KGの作成には課題がある。
文書から解析されたKGは明示的な接続(文書によって直接記述される)から構成されるが、暗黙的な接続(直接記述されていないが人間に明らかである)を見逃す。
これらの課題に対処するため、この予備研究はGAME-KGフレームワークを導入し、"Gaming for Augmenting Metadata and Enhancing Knowledge Graphs"の略である。
GAME-KGは、ゲームを通じて収集されたクラウドソースフィードバックを使用することで、KGの明示的および暗黙的な接続を変更するための連合的なアプローチである。
GAME-KGは、ダークシャドウズのUnityテストシナリオ、米国司法省(DOJ)のプレスリリースから解析されたKGのフィードバックを収集するビデオゲーム、およびOpenAIのGPT-4が修正および修正されていないKGに基づいて質問に答えるよう促される次の実験の2つのデモで示される。
最初の結果は、GAME-KGがKGの強化に有効なフレームワークになり得ることを示唆し、同時に人間によって検証された構造化事実の説明可能なセットを提供する。
関連論文リスト
- Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
知識グラフ(KG)は質問応答(QA)のための信頼できる知識ソースとして機能する。
我々は、LLMとKGの深い相乗効果を促進する新しいフレームワークであるDoG(Decoding on Graphs)を提案する。
様々なKGQAタスクに対して異なるバックグラウンドKGを用いた実験により、DoGが優れた、堅牢なパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-24T04:01:40Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
大規模言語モデル(LLM)は知識ギャップと幻覚のために忠実な推論に苦しむ。
グラフ制約推論(GCR)は、KGにおける構造的知識とLLMにおける非構造的推論を橋渡しする新しいフレームワークである。
GCRは最先端のパフォーマンスを達成し、追加のトレーニングをすることなく、見えないKGに対して強力なゼロショット一般化性を示す。
論文 参考訳(メタデータ) (2024-10-16T22:55:17Z) - A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
そこで本研究では,テキスト内学習,すなわちKG-ICLを介し,プロンプトに基づくKGファウンデーションモデルを提案する。
クエリにおけるエンティティや関係を発見できないような一般化機能を備えたプロンプトグラフを符号化するために,まず統一トークン化器を提案する。
そこで我々は,プロンプトエンコーディングとKG推論を行う2つのメッセージパッシングニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T06:47:18Z) - Context Graph [8.02985792541121]
本稿では,大規模言語モデル(LLM)を活用して候補エンティティや関連するコンテキストを検索する,コンテキストグラフ推論のtextbfCGR$3$パラダイムを提案する。
実験の結果、CGR$3$はKG完了(KGC)およびKG質問応答(KGQA)タスクの性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-06-17T02:59:19Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - FedMKGC: Privacy-Preserving Federated Multilingual Knowledge Graph
Completion [21.4302940596294]
知識グラフ補完(KGC)は、知識グラフ(KG)の欠落事実を予測することを目的とする。
KG間で生データを転送することに依存する従来の方法は、プライバシー上の懸念を提起している。
我々は、生データ交換やエンティティアライメントを必要とせずに、複数のKGから暗黙的に知識を集約する新しい連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-17T08:09:27Z) - On the Sweet Spot of Contrastive Views for Knowledge-enhanced
Recommendation [49.18304766331156]
KG強化推薦のための新しいコントラスト学習フレームワークを提案する。
我々は、KGとIGのための2つの異なるコントラストビューを構築し、それらの相互情報を最大化する。
実世界の3つのデータセットに対する大規模な実験結果から,本手法の有効性と有効性が確認された。
論文 参考訳(メタデータ) (2023-09-23T14:05:55Z) - Collaborative Knowledge Graph Fusion by Exploiting the Open Corpus [59.20235923987045]
知識表現の質を維持しながら、新たに収穫した3倍の知識グラフを豊かにすることは困難である。
本稿では,付加コーパスから得られる情報を用いてKGを精製するシステムを提案する。
論文 参考訳(メタデータ) (2022-06-15T12:16:10Z) - Language Models are Open Knowledge Graphs [75.48081086368606]
近年の深層言語モデルは,事前学習を通じて大規模コーパスから知識を自動取得する。
本稿では,言語モデルに含まれる知識をKGにキャストするための教師なし手法を提案する。
KGは、コーパス上の(微調整なしで)事前訓練された言語モデルの1つの前方パスで構築されていることを示す。
論文 参考訳(メタデータ) (2020-10-22T18:01:56Z) - Knowledge Graphs and Knowledge Networks: The Story in Brief [0.1933681537640272]
知識グラフ(KG)は、実世界のノイズの多い生情報を構造化形式で表現し、エンティティ間の関係をキャプチャする。
ソーシャルネットワーク、レコメンダシステム、計算生物学、関係知識表現といった動的現実世界の応用は、困難な研究課題として浮上している。
この記事では、AIのためのKGの旅を要約する。
論文 参考訳(メタデータ) (2020-03-07T18:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。