論文の概要: Mixed Continuous and Categorical Flow Matching for 3D De Novo Molecule Generation
- arxiv url: http://arxiv.org/abs/2404.19739v1
- Date: Tue, 30 Apr 2024 17:37:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 13:16:41.283560
- Title: Mixed Continuous and Categorical Flow Matching for 3D De Novo Molecule Generation
- Title(参考訳): 3次元デノボ分子生成のための連続流とカテゴリー流の混合マッチング
- Authors: Ian Dunn, David Ryan Koes,
- Abstract要約: フローマッチングは拡散モデルを一般化する最近提案された生成モデリングフレームワークである。
本稿では,フローマッチングフレームワークを,確率単純性として知られるカテゴリデータの連続的な表現に制約のあるフローを構築することにより,カテゴリデータに拡張する。
実際には、データのカテゴリ的な性質に配慮しないシンプルなアプローチは、同等あるいは優れたパフォーマンスをもたらすことが分かっています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep generative models that produce novel molecular structures have the potential to facilitate chemical discovery. Diffusion models currently achieve state of the art performance for 3D molecule generation. In this work, we explore the use of flow matching, a recently proposed generative modeling framework that generalizes diffusion models, for the task of de novo molecule generation. Flow matching provides flexibility in model design; however, the framework is predicated on the assumption of continuously-valued data. 3D de novo molecule generation requires jointly sampling continuous and categorical variables such as atom position and atom type. We extend the flow matching framework to categorical data by constructing flows that are constrained to exist on a continuous representation of categorical data known as the probability simplex. We call this extension SimplexFlow. We explore the use of SimplexFlow for de novo molecule generation. However, we find that, in practice, a simpler approach that makes no accommodations for the categorical nature of the data yields equivalent or superior performance. As a result of these experiments, we present FlowMol, a flow matching model for 3D de novo generative model that achieves improved performance over prior flow matching methods, and we raise important questions about the design of prior distributions for achieving strong performance in flow matching models. Code and trained models for reproducing this work are available at https://github.com/dunni3/FlowMol
- Abstract(参考訳): 新規な分子構造を生成する深層生成モデルは、化学的発見を促進する可能性がある。
拡散モデルは現在、3D分子生成の最先端性能を実現している。
本研究では,拡散モデルを一般化したフローマッチング(フローマッチング)のデ・ノボ分子生成への応用について検討する。
フローマッチングはモデル設計における柔軟性を提供するが、このフレームワークは継続的に評価されたデータを想定している。
3D de novo分子の生成には、原子の位置や原子タイプなどの連続およびカテゴリー変数を共同でサンプリングする必要がある。
本稿では,フローマッチングフレームワークを,確率単純性として知られるカテゴリデータの連続的な表現に制約のあるフローを構築することにより,カテゴリデータに拡張する。
この拡張をSimplexFlowと呼びます。
De novo分子生成におけるSimplexFlowの利用について検討する。
しかし、実際には、データの分類的性質に配慮しないより単純なアプローチは、同等または優れたパフォーマンスをもたらす。
これらの実験の結果,3次元デノボ生成モデルのフローマッチングモデルであるFlowMolが,従来のフローマッチング手法よりも優れた性能を実現し,フローマッチングモデルにおいて高い性能を達成するために,先行分布の設計について重要な疑問を投げかけている。
この作業を再現するためのコードとトレーニングされたモデルはhttps://github.com/dunni3/FlowMolで公開されている。
関連論文リスト
- Exploring Discrete Flow Matching for 3D De Novo Molecule Generation [0.0]
フローマッチングは、最近提案されたジェネレーティブモデリングフレームワークで、様々なタスクにおいて印象的なパフォーマンスを実現している。
本稿では,既存の手法よりも学習可能なパラメータが少ない3D de novo設計における技術性能の状態を達成した,オープンソースのFlowMol-CTMCを提案する。
論文 参考訳(メタデータ) (2024-11-25T18:27:39Z) - Conformation Generation using Transformer Flows [55.2480439325792]
本稿では,トランスネットワークに基づくコンフォーメーション生成のためのフローベースモデルConfFlowを提案する。
ConfFlowは、明示的な物理的制約を課すことなく、座標空間で直接サンプリングする。
ConfFlowは、最先端の学習ベースの方法と比較して、最大40%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-11-16T14:42:05Z) - A survey of probabilistic generative frameworks for molecular simulations [0.0]
生成的人工知能は現在、分子科学において広く使われているツールである。
本稿では,フローベースモデルと拡散モデルという2つのカテゴリに大別された生成モデルのクラスを紹介し,説明する。
可変次元, 複雑性, モーダル非対称性を持つデータセットの精度, 計算コスト, 生成速度について検討する。
論文 参考訳(メタデータ) (2024-11-14T12:05:08Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - Efficient 3D Molecular Generation with Flow Matching and Scale Optimal Transport [43.56824843205882]
SemlaはスケーラブルなE(3)等価メッセージパッシングアーキテクチャである。
SemlaFlowはフローマッチングとスケールの最適トランスポートを使ってトレーニングされている。
本モデルでは,100個のサンプリングステップのみを用いて,ベンチマークデータセットの最先端結果を生成する。
論文 参考訳(メタデータ) (2024-06-11T13:51:51Z) - Fisher Flow Matching for Generative Modeling over Discrete Data [12.69975914345141]
離散データのための新しいフローマッチングモデルであるFisher-Flowを紹介する。
Fisher-Flowは、離散データ上のカテゴリー分布を考慮し、明らかに幾何学的な視点を採っている。
Fisher-Flowにより誘導される勾配流は, 前方KLの発散を低減するのに最適であることを示す。
論文 参考訳(メタデータ) (2024-05-23T15:02:11Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - SE(3)-Stochastic Flow Matching for Protein Backbone Generation [54.951832422425454]
我々はFoldFlowを紹介した。FoldFlowは,3mathrmD$の剛性運動に対するフローマッチングパラダイムに基づく,モデリング能力向上のための新しい生成モデルである。
FoldFlow生成モデルのファミリーは、タンパク質の生成モデルに対する従来のアプローチよりもいくつかの利点を提供している。
論文 参考訳(メタデータ) (2023-10-03T19:24:24Z) - Score-Based Generative Models for Molecule Generation [0.8808021343665321]
我々は、ZINCデータセットから150万のサンプルを表現したTransformerベースのスコア関数をトレーニングする。
私たちは、Mosesベンチマークフレームワークを使用して、一連のメトリクスで生成されたサンプルを評価します。
論文 参考訳(メタデータ) (2022-03-07T13:46:02Z) - Generative Flows with Invertible Attentions [135.23766216657745]
生成フローモデルに対する2種類の非可逆的注意機構を導入する。
フロー特徴写像の2分割毎に注意重みと入力表現を学習するために,分割に基づく注意機構を利用する。
提案手法は, トラクタブルジャコビアン行列を用いた非可逆アテンションモジュールをフローベースモデルの任意の位置にシームレスに統合する。
論文 参考訳(メタデータ) (2021-06-07T20:43:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。