論文の概要: A survey of probabilistic generative frameworks for molecular simulations
- arxiv url: http://arxiv.org/abs/2411.09388v1
- Date: Thu, 14 Nov 2024 12:05:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:23:21.352227
- Title: A survey of probabilistic generative frameworks for molecular simulations
- Title(参考訳): 分子シミュレーションのための確率的生成フレームワークの研究
- Authors: Richard John, Lukas Herron, Pratyush Tiwary,
- Abstract要約: 生成的人工知能は現在、分子科学において広く使われているツールである。
本稿では,フローベースモデルと拡散モデルという2つのカテゴリに大別された生成モデルのクラスを紹介し,説明する。
可変次元, 複雑性, モーダル非対称性を持つデータセットの精度, 計算コスト, 生成速度について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Generative artificial intelligence is now a widely used tool in molecular science. Despite the popularity of probabilistic generative models, numerical experiments benchmarking their performance on molecular data are lacking. In this work, we introduce and explain several classes of generative models, broadly sorted into two categories: flow-based models and diffusion models. We select three representative models: Neural Spline Flows, Conditional Flow Matching, and Denoising Diffusion Probabilistic Models, and examine their accuracy, computational cost, and generation speed across datasets with tunable dimensionality, complexity, and modal asymmetry. Our findings are varied, with no one framework being the best for all purposes. In a nutshell, (i) Neural Spline Flows do best at capturing mode asymmetry present in low-dimensional data, (ii) Conditional Flow Matching outperforms other models for high-dimensional data with low complexity, and (iii) Denoising Diffusion Probabilistic Models appears the best for low-dimensional data with high complexity. Our datasets include a Gaussian mixture model and the dihedral torsion angle distribution of the Aib\textsubscript{9} peptide, generated via a molecular dynamics simulation. We hope our taxonomy of probabilistic generative frameworks and numerical results may guide model selection for a wide range of molecular tasks.
- Abstract(参考訳): 生成的人工知能は現在、分子科学において広く使われているツールである。
確率的生成モデルの人気にもかかわらず、分子データのパフォーマンスをベンチマークする数値実験は不足している。
本研究では,フローベースモデルと拡散モデルという2つのカテゴリに大別された生成モデルのクラスを紹介し,説明する。
ニューラルスプラインフロー, 条件付きフローマッチング, 拡散確率モデルの3つの代表的なモデルを選択し, その精度, 計算コスト, 生成速度を調整可能な次元性, 複雑性, モーダル非対称性で検証する。
私たちの発見は様々で、あらゆる目的に最適なフレームワークは誰もいません。
ひと言で言えば、。
一 ニューラルスプラインフローは、低次元データに存在するモード非対称性を捉えるのに最適である。
(II)条件付きフローマッチングは、複雑さの低い高次元データに対して、他のモデルよりも優れており、
(3)拡散確率モデルのデノイングは,複雑性の高い低次元データに最適である。
本データセットは分子動力学シミュレーションにより生成したAib\textsubscript{9}ペプチドのガウス混合モデルと二面体ねじれ角分布を含む。
確率的生成フレームワークの分類と数値的な結果は、幅広い分子課題に対するモデル選択を導くことを願っている。
関連論文リスト
- MING: A Functional Approach to Learning Molecular Generative Models [46.189683355768736]
本稿では,関数表現に基づく分子生成モデル学習のための新しいパラダイムを提案する。
本稿では,関数空間における分子分布を学習する拡散モデルである分子インプリシットニューラルジェネレーション(MING)を提案する。
論文 参考訳(メタデータ) (2024-10-16T13:02:02Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Uncertainty-aware Surrogate Models for Airfoil Flow Simulations with Denoising Diffusion Probabilistic Models [26.178192913986344]
本研究では,拡散確率モデル(DDPM)を用いて乱流シミュレーションのための不確実性を考慮した代理モデルの訓練を行う。
その結果、DDPMは解全体の分布を正確に把握し、その結果、シミュレーションの不確かさを正確に推定できることがわかった。
また,正規拡散モデルと比較して,新たな生成モデルであるフローマッチングの評価を行った。
論文 参考訳(メタデータ) (2023-12-08T19:04:17Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Variational Autoencoding Molecular Graphs with Denoising Diffusion
Probabilistic Model [0.0]
本稿では,階層構造を確率論的潜在ベクトルに組み込んだ新しい深層生成モデルを提案する。
本モデルは,物理特性と活性に関する小さなデータセットを用いて,分子特性予測のための有効な分子潜在ベクトルを設計できることを実証する。
論文 参考訳(メタデータ) (2023-07-02T17:29:41Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Calibration and generalizability of probabilistic models on low-data
chemical datasets with DIONYSUS [0.0]
我々は、小さな化学データセット上での確率論的機械学習モデルの校正と一般化可能性について広範な研究を行う。
私たちは、さまざまなタスク(バイナリ、回帰)とデータセットにおける予測と不確実性の品質を分析します。
我々は、新しい化学実験において一般的なシナリオである、小さな化学データセットをモデル化するためのモデルと特徴の選択に関する実践的な洞察を提供する。
論文 参考訳(メタデータ) (2022-12-03T08:19:06Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。