論文の概要: Exploring Discrete Flow Matching for 3D De Novo Molecule Generation
- arxiv url: http://arxiv.org/abs/2411.16644v1
- Date: Mon, 25 Nov 2024 18:27:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:26.729027
- Title: Exploring Discrete Flow Matching for 3D De Novo Molecule Generation
- Title(参考訳): 3次元デノボ分子生成のための離散フローマッチングの探索
- Authors: Ian Dunn, David R. Koes,
- Abstract要約: フローマッチングは、最近提案されたジェネレーティブモデリングフレームワークで、様々なタスクにおいて印象的なパフォーマンスを実現している。
本稿では,既存の手法よりも学習可能なパラメータが少ない3D de novo設計における技術性能の状態を達成した,オープンソースのFlowMol-CTMCを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep generative models that produce novel molecular structures have the potential to facilitate chemical discovery. Flow matching is a recently proposed generative modeling framework that has achieved impressive performance on a variety of tasks including those on biomolecular structures. The seminal flow matching framework was developed only for continuous data. However, de novo molecular design tasks require generating discrete data such as atomic elements or sequences of amino acid residues. Several discrete flow matching methods have been proposed recently to address this gap. In this work we benchmark the performance of existing discrete flow matching methods for 3D de novo small molecule generation and provide explanations of their differing behavior. As a result we present FlowMol-CTMC, an open-source model that achieves state of the art performance for 3D de novo design with fewer learnable parameters than existing methods. Additionally, we propose the use of metrics that capture molecule quality beyond local chemical valency constraints and towards higher-order structural motifs. These metrics show that even though basic constraints are satisfied, the models tend to produce unusual and potentially problematic functional groups outside of the training data distribution. Code and trained models for reproducing this work are available at \url{https://github.com/dunni3/FlowMol}.
- Abstract(参考訳): 新規な分子構造を生成する深層生成モデルは、化学的発見を促進する可能性がある。
フローマッチングは、生体分子構造を含む様々なタスクにおいて印象的な性能を達成した、最近提案されたジェネレーティブモデリングフレームワークである。
セミナーフローマッチングフレームワークは連続データのみを対象として開発された。
しかし、de novo分子設計タスクは、原子元素やアミノ酸残基の配列のような離散的なデータを生成する必要がある。
このギャップに対処するために、近年、いくつかの離散フローマッチング法が提案されている。
本研究では,3次元デノボ小分子生成のための離散フローマッチング法の性能をベンチマークし,それらの異なる挙動について説明する。
その結果,既存の手法に比べて学習可能なパラメータが少ない3D de novo設計の最先端性能を実現するオープンソースモデルであるFlowMol-CTMCを提案する。
さらに,分子の質を局所的な化学価の制約を超え,高次構造モチーフへと導く指標も提案する。
これらの指標は、基本的な制約が満たされているにもかかわらず、トレーニングデータ分布以外の異常かつ潜在的に問題のある機能群を生成する傾向があることを示している。
この作業を再現するためのコードとトレーニングされたモデルは、 \url{https://github.com/dunni3/FlowMol}で公開されている。
関連論文リスト
- TFG-Flow: Training-free Guidance in Multimodal Generative Flow [73.93071065307782]
本稿では,マルチモーダルな生成フローのためのトレーニング不要指導法TFG-Flowを紹介する。
TFG-Flowは、離散変数の導出において、非バイアスサンプリングの特性を維持しながら、次元の呪いに対処する。
TFG-Flowは, 所望の特性を持つ分子を生成することにより, 薬物設計において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2025-01-24T03:44:16Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - MING: A Functional Approach to Learning Molecular Generative Models [46.189683355768736]
本稿では,関数表現に基づく分子生成モデル学習のための新しいパラダイムを提案する。
本稿では,関数空間における分子分布を学習する拡散モデルである分子インプリシットニューラルジェネレーション(MING)を提案する。
論文 参考訳(メタデータ) (2024-10-16T13:02:02Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
拡散モデルは、画像、分子、DNA、RNA、タンパク質配列の自然なデザイン空間を捉えるのに優れている。
これらの設計空間の自然性を保ちながら、下流の報酬関数を最適化することを目指している。
提案アルゴリズムは,中間雑音状態が将来高い報酬をもたらすことの先駆けとして,ソフトバリュー関数を統合する。
論文 参考訳(メタデータ) (2024-08-15T16:47:59Z) - Mixed Continuous and Categorical Flow Matching for 3D De Novo Molecule Generation [0.0]
フローマッチングは拡散モデルを一般化する最近提案された生成モデリングフレームワークである。
本稿では,フローマッチングフレームワークを,確率単純性として知られるカテゴリデータの連続的な表現に制約のあるフローを構築することにより,カテゴリデータに拡張する。
実際には、データのカテゴリ的な性質に配慮しないシンプルなアプローチは、同等あるいは優れたパフォーマンスをもたらすことが分かっています。
論文 参考訳(メタデータ) (2024-04-30T17:37:21Z) - Navigating the Design Space of Equivariant Diffusion-Based Generative
Models for De Novo 3D Molecule Generation [1.3124513975412255]
深部生成拡散モデル(Deep Generative diffusion model)は、材料科学と薬物発見における3D de novo分子設計のための有望な道である。
E(3)-同変拡散モデルの設計空間を探索し、未探索領域に焦点をあてる。
本稿では,QM9データセットとGEOM-Drugsデータセットの確立したモデルよりも一貫して優れるEQGAT-diffモデルを提案する。
論文 参考訳(メタデータ) (2023-09-29T14:53:05Z) - Modular Flows: Differential Molecular Generation [18.41106104201439]
フローは、エンコーディングプロセスを反転させることで、分子を効果的に生成することができる。
既存のフローモデルでは、アーチファクトのデクタンス化や特定のノード/エッジの順序付けが必要となる。
我々はノードODEとグラフPDEのシステムに基づく連続正規化E(3)-同変フローを開発する。
我々のモデルは、メッセージパッシング時間ネットワークとしてキャストすることができ、その結果、密度推定と分子生成のタスクにおいて最上位のパフォーマンスが得られる。
論文 参考訳(メタデータ) (2022-10-12T09:08:35Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Scaffold-constrained molecular generation [0.0]
SMILESをベースとしたリカレントニューラルネットワーク(Recurrent Neural Network, RNN)生成モデルを構築し, 足場制約付き生成を実現するため, サンプリング手法を改良した。
本稿では,様々なタスクにおいて足場制約付き生成を行う手法について紹介する。
論文 参考訳(メタデータ) (2020-09-15T15:41:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。