Gravitational entropy is observer-dependent
- URL: http://arxiv.org/abs/2405.00114v2
- Date: Sat, 18 May 2024 17:49:39 GMT
- Title: Gravitational entropy is observer-dependent
- Authors: Julian De Vuyst, Stefan Eccles, Philipp A. Hoehn, Josh Kirklin,
- Abstract summary: A proper accounting of the role played by an observer promotes the von Neumann algebra of observables in a given spacetime subregion.
We show that this procedure depends on which observer is employed.
We make this precise by considering a setup in which many possible observers are present.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum gravity, it has been argued that a proper accounting of the role played by an observer promotes the von Neumann algebra of observables in a given spacetime subregion from Type III to Type II. While this allows for a mathematically precise definition of its entropy, we show that this procedure depends on which observer is employed. We make this precise by considering a setup in which many possible observers are present; by generalising previous approaches, we derive density operators for the subregion relative to different observers (and relative to arbitrary collections of observers), and we compute the associated entropies in a semiclassical regime, as well as in some specific examples that go beyond this regime. We find that the entropies seen by distinct observers can drastically differ. Our work makes extensive use of the formalism of quantum reference frames (QRF); indeed, as we point out, the 'observers' considered here and in the previous works are nothing but QRFs. In the process, we demonstrate that the description of physical states and observables invoked by Chandrasekaran et al. [arXiv:2206.10780] is equivalent to the Page-Wootters formalism, leading to the informal slogan "PW=CLPW". It is our hope that this paper will help motivate a long overdue union between the QRF and quantum gravity communities. Further details will appear in a companion paper.
Related papers
- Crossed products and quantum reference frames: on the observer-dependence of gravitational entropy [0.0]
We provide an in-depth analysis of gravitational entropy using quantum reference frames (QRFs)
We consider a semiclassical regime characterized by clocks whose energy fluctuations dominate over the fluctuations of the energy of the QFT.
We show how the clock may simply be partially traced' out when evaluating the entropy.
arXiv Detail & Related papers (2024-12-20T02:29:55Z) - On the evolution of expected values in open quantum systems [44.99833362998488]
We identify three factors contributing to the evolution of expected values.
In some cases, the non-thermal contributions to the energy rate of change can be expressed as the expected value of a Hermitian operator.
arXiv Detail & Related papers (2024-02-29T06:47:28Z) - Unification of the MWI formalism and Bohmian mechanics for the ensembles
of event universes in Minkowski-like space [0.0]
Dendrogramic Holographic Theory (DHT) is based on the representation of observed events by dendrograms (finite trees) presenting observers subjective image of universe.
We consider an ensemble of observers performing observations on each other and representing them by p-adic trees.
In such observers universe we introduce a kind of Minkowski space structure, which is statistical by its nature.
arXiv Detail & Related papers (2023-09-28T18:54:52Z) - Measurement events relative to temporal quantum reference frames [44.99833362998488]
We compare two consistent approaches to the Page-Wootters formalism to clarify the operational meaning of evolution and measurements.
We show that for non-ideal clocks, the purified measurement approach yields a time non-local evolution equation.
We argue that these approaches describe operationally distinct situations.
arXiv Detail & Related papers (2023-08-21T18:26:12Z) - Entropy of the quantum work distribution [0.0]
We show how the Shannon entropy of the work distribution admits a general upper bound depending on the initial diagonal entropy.
We demonstrate that this approach captures strong signatures of the underlying physics in a diverse range of settings.
arXiv Detail & Related papers (2022-10-14T15:31:39Z) - Absence of operator growth for average equal-time observables in
charge-conserved sectors of the Sachdev-Ye-Kitaev model [11.353329565587574]
Quantum scrambling plays an important role in understanding thermalization in closed quantum systems.
We show that scrambling is absent for disorder-averaged expectation values of observables.
We develop a cumulant expansion approach to approximate the evolution of equal-time observables.
arXiv Detail & Related papers (2022-10-05T17:47:52Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.