Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings
- URL: http://arxiv.org/abs/2405.00172v1
- Date: Tue, 30 Apr 2024 19:43:01 GMT
- Title: Re-visiting Skip-Gram Negative Sampling: Dimension Regularization for More Efficient Dissimilarity Preservation in Graph Embeddings
- Authors: David Liu, Arjun Seshadri, Tina Eliassi-Rad, Johan Ugander,
- Abstract summary: We show that node-wise repulsion is, in aggregate, an approximate re-centering of the node embedding dimensions.
We propose an algorithm augmentation framework that speeds up any existing algorithm, supervised or unsupervised.
- Score: 8.858596502294471
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A wide range of graph embedding objectives decompose into two components: one that attracts the embeddings of nodes that are perceived as similar, and another that repels embeddings of nodes that are perceived as dissimilar. Because real-world graphs are sparse and the number of dissimilar pairs grows quadratically with the number of nodes, Skip-Gram Negative Sampling (SGNS) has emerged as a popular and efficient repulsion approach. SGNS repels each node from a sample of dissimilar nodes, as opposed to all dissimilar nodes. In this work, we show that node-wise repulsion is, in aggregate, an approximate re-centering of the node embedding dimensions. Such dimension operations are much more scalable than node operations. The dimension approach, in addition to being more efficient, yields a simpler geometric interpretation of the repulsion. Our result extends findings from the self-supervised learning literature to the skip-gram model, establishing a connection between skip-gram node contrast and dimension regularization. We show that in the limit of large graphs, under mild regularity conditions, the original node repulsion objective converges to optimization with dimension regularization. We use this observation to propose an algorithm augmentation framework that speeds up any existing algorithm, supervised or unsupervised, using SGNS. The framework prioritizes node attraction and replaces SGNS with dimension regularization. We instantiate this generic framework for LINE and node2vec and show that the augmented algorithms preserve downstream performance while dramatically increasing efficiency.
Related papers
- Combining Optimal Transport and Embedding-Based Approaches for More Expressiveness in Unsupervised Graph Alignment [19.145556156889064]
Unsupervised graph alignment finds the one-to-one node correspondence between a pair of attributed graphs by only exploiting graph structure and node features.
We propose a principled approach to combine their advantages motivated by theoretical analysis of model expressiveness.
We are the first to guarantee the one-to-one matching constraint by reducing the problem to maximum weight matching.
arXiv Detail & Related papers (2024-06-19T04:57:35Z) - Generative Semi-supervised Graph Anomaly Detection [42.02691404704764]
This work considers a practical semi-supervised graph anomaly detection (GAD) scenario, where part of the nodes in a graph are known to be normal.
We propose a novel Generative GAD approach (namely GGAD) for the semi-supervised scenario to better exploit the normal nodes.
GGAD is designed to leverage two important priors about the anomaly nodes -- asymmetric local affinity and egocentric closeness.
arXiv Detail & Related papers (2024-02-19T06:55:50Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - Node Embedding for Homophilous Graphs with ARGEW: Augmentation of Random
walks by Graph Edge Weights [2.2935273605606494]
ARGEW is a novel augmentation method for random walks that expands the corpus in such a way that nodes with larger edge weights end up with closer embeddings.
With several real-world networks, we demonstrate that with ARGEW, compared to not using it, the desired pattern that node pairs with larger edge weights have closer embeddings is much clearer.
arXiv Detail & Related papers (2023-08-11T06:19:23Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
Learning node representations benefits various downstream tasks in graph analysis such as community detection and node classification.
We propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner.
G2R maps nodes in distinct groups into different subspaces, while each subspace is compact and different subspaces are dispersed.
arXiv Detail & Related papers (2022-02-13T07:46:24Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Integrating Network Embedding and Community Outlier Detection via
Multiclass Graph Description [15.679313861083239]
We propose a novel unsupervised graph embedding approach (called DMGD) which integrates outlier and community detection with node embedding.
We show the theoretical bounds on the number of outliers detected by DMGD.
Our formulation boils down to an interesting minimax game between the outliers, community assignments and the node embedding function.
arXiv Detail & Related papers (2020-07-20T16:21:07Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
Graph neural networks (GNNs) learn the representation of a node by aggregating its neighbors.
Over-smoothing is one of the key issues which limit the performance of GNNs as the number of layers increases.
We introduce two over-smoothing metrics and a novel technique, i.e., differentiable group normalization (DGN)
arXiv Detail & Related papers (2020-06-12T07:18:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.