Aptly: Making Mobile Apps from Natural Language
- URL: http://arxiv.org/abs/2405.00229v1
- Date: Tue, 30 Apr 2024 22:33:34 GMT
- Title: Aptly: Making Mobile Apps from Natural Language
- Authors: Evan W. Patton, David Y. J. Kim, Ashley Granquist, Robin Liu, Arianna Scott, Jennet Zamanova, Harold Abelson,
- Abstract summary: Aptly is an extension of the MIT App Inventor platform enabling mobile app development via natural language.
The paper concludes with insights from a study of a pilot implementation involving high school students, which examines Aptly's practicality and user experience.
- Score: 0.7852714805965528
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present Aptly, an extension of the MIT App Inventor platform enabling mobile app development via natural language powered by code-generating large language models (LLMs). Aptly complements App Inventor's block language with a text language designed to allow visual code generation via text-based LLMs. We detail the technical aspects of how the Aptly server integrates LLMs with a realtime collaboration function to facilitate the automated creation and editing of mobile apps given user instructions. The paper concludes with insights from a study of a pilot implementation involving high school students, which examines Aptly's practicality and user experience. The findings underscore Aptly's potential as a tool that democratizes app development and fosters technological creativity.
Related papers
- On-Device Language Models: A Comprehensive Review [26.759861320845467]
Review examines the challenges of deploying computationally expensive large language models on resource-constrained devices.
Paper investigates on-device language models, their efficient architectures, as well as state-of-the-art compression techniques.
Case studies of on-device language models from major mobile manufacturers demonstrate real-world applications and potential benefits.
arXiv Detail & Related papers (2024-08-26T03:33:36Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Intelligent Virtual Assistants with LLM-based Process Automation [31.275267197246595]
This paper proposes a novel LLM-based virtual assistant that can automatically perform multi-step operations within mobile apps based on high-level user requests.
The system represents an advance in assistants by providing an end-to-end solution for parsing instructions, reasoning about goals, and executing actions.
arXiv Detail & Related papers (2023-12-04T07:51:58Z) - Lessons from Building StackSpot AI: A Contextualized AI Coding Assistant [2.268415020650315]
A new breed of tools, built atop Large Language Models, is emerging.
These tools aim to mitigate drawbacks by employing techniques like fine-tuning or enriching user prompts with contextualized information.
arXiv Detail & Related papers (2023-11-30T10:51:26Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of large language models (LLMs)
We introduce LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python.
It introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores.
arXiv Detail & Related papers (2023-11-13T15:08:59Z) - Natural Language Commanding via Program Synthesis [0.29360071145551064]
We present Semantic Interpreter, a natural language-friendly AI system for productivity software such as Microsoft Office.
LLMs are excellent at understanding user intent expressed as natural language, but not sufficient for fulfilling application-specific user intent.
We introduce the Office Domain Specific Language (O), a concise, high-level language specialized for performing actions in and interacting with entities in Office applications.
arXiv Detail & Related papers (2023-06-06T07:28:49Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
We present CodeTF, an open-source Transformer-based library for state-of-the-art Code LLMs and code intelligence.
Our library supports a collection of pretrained Code LLM models and popular code benchmarks.
We hope CodeTF is able to bridge the gap between machine learning/generative AI and software engineering.
arXiv Detail & Related papers (2023-05-31T05:24:48Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checker is a framework comprising a set of plug-and-play modules that facilitate fact-checking.
This framework provides a fast and efficient way to construct fact-checking systems in low-resource environments.
arXiv Detail & Related papers (2023-05-24T01:46:07Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z) - LAVIS: A Library for Language-Vision Intelligence [98.88477610704938]
LAVIS is an open-source library for LAnguage-VISion research and applications.
It features a unified interface to easily access state-of-the-art image-language, video-language models and common datasets.
arXiv Detail & Related papers (2022-09-15T18:04:10Z) - Text2App: A Framework for Creating Android Apps from Text Descriptions [5.694344021692763]
Text2App is a framework that allows users to create functional Android applications from natural language specifications.
We transform natural language into an abstract intermediate formal language representing an application with a substantially smaller number of tokens.
This abstraction of programming details allows seq2seq networks to learn complex application structures with less overhead.
arXiv Detail & Related papers (2021-04-16T18:13:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.