論文の概要: SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound
- arxiv url: http://arxiv.org/abs/2405.00233v2
- Date: Thu, 28 Nov 2024 12:31:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-02 15:15:12.421752
- Title: SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound
- Title(参考訳): SemantiCodec:ジェネラルサウンドのための超低ビットレートセマンティックオーディオコーデック
- Authors: Haohe Liu, Xuenan Xu, Yi Yuan, Mengyue Wu, Wenwu Wang, Mark D. Plumbley,
- Abstract要約: SemantiCodecは、様々なオーディオタイプで毎秒100トークン未満にオーディオを圧縮するように設計されている。
本稿では,セマンティコーデックが再現性に関する最先端の記述を著しく上回っていることを示す。
また,SemantiCodecは,評価されたすべての最先端オーディオコーデックよりもはるかにリッチな意味情報を含んでいることも示唆した。
- 参考スコア(独自算出の注目度): 40.810505707522324
- License:
- Abstract: Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general sound, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised pre-trained Audio Masked Autoencoder (AudioMAE), discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.40 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated state-of-the-art audio codecs, even at significantly lower bitrates. Our code and demos are available at https://haoheliu.github.io/SemantiCodec/.
- Abstract(参考訳): 大規模言語モデル (LLM) は、音声コーデックによって音声を個別のトークンに変換することにより、言語モデリング技術のオーディオデータへの応用を可能にする。
しかし、従来のコーデックは高ビットレートや音声などの狭い領域内で動作し、効率的な言語モデリングに必要な意味的なヒントが欠けていることが多い。
これらの課題に対処するため,セマンティコーデック(SemantiCodec)を導入し,音質を損なうことなく,音声,一般音,音楽など多種多様な音声タイプに対して,毎秒100トークン未満で音声を圧縮する新しいコーデックを提案する。
SemantiCodecは、2つのエンコーダアーキテクチャを備えている: 自己教師付きオーディオマスケードオートエンコーダ(AudioMAE)を使用したセマンティックエンコーダ。
意味的および音響的エンコーダ出力は拡散モデルに基づくデコーダを介して音声を再構成するために使用される。
SemantiCodecはトークンレートが25, 50, 100/秒の3つの変種で表示され、0.31kbpsから1.40kbpsまでの超低ビットレートをサポートする。
実験結果から,SemantiCodecは再構築品質において最先端のDescriptコーデックよりも優れていた。
以上の結果から,SemantiCodecは評価されたすべての最先端オーディオコーデックよりもはるかにリッチなセマンティック情報を含んでいることが示唆された。
私たちのコードとデモはhttps://haoheliu.github.io/SemantiCodec/で公開されています。
関連論文リスト
- LSCodec: Low-Bitrate and Speaker-Decoupled Discrete Speech Codec [14.7377193484733]
LSCodecは低話者分離能力と低話者分離能力を持つ離散音声である。
再構成実験により、LSCodecは、単一のコードブックだけで、ベースラインよりも語彙サイズが小さい、優れた知性およびオーディオ品質を示す。
論文 参考訳(メタデータ) (2024-10-21T08:23:31Z) - Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference [10.909997817643905]
提案する低フレームレート音声符号化(LFSC: Low Frame-rate Speech Codec)は, 有限スカラー量子化と大規模言語モデルによる対角訓練を利用して, 1.89kbps, 21.5fpsの高品質音声圧縮を実現するニューラルオーディオである。
本稿では,従来のモデルに匹敵する品質を向上しつつ,テキスト音声モデルの3倍高速な推定が可能であることを実証する。
論文 参考訳(メタデータ) (2024-09-18T16:39:10Z) - Learning Source Disentanglement in Neural Audio Codec [20.335701584949526]
我々は、音源符号化と音源分離を組み合わせた新しいアプローチである、ソース分散ニューラルオーディオコーデック(SD-Codec)を紹介する。
SD-Codecは、音声の合成と分離を共同で学習することで、異なるドメインからの音声信号を異なるコードブック(離散表現の集合)に明示的に割り当てる。
実験結果から,SD-Codecは競合的再合成品質を維持するだけでなく,分離結果に支えられ,潜伏空間における異なるソースの絡み合いが成功したことが示唆された。
論文 参考訳(メタデータ) (2024-09-17T14:21:02Z) - Codec Does Matter: Exploring the Semantic Shortcoming of Codec for Audio Language Model [36.61105228468503]
X-Codecは、Residual Vector Quantizationステージの前に、事前訓練されたセマンティックエンコーダのセマンティック機能を組み込んでいる。
X-Codecは音声合成タスクのWERを大幅に削減し、これらの利点を非音声アプリケーションに拡張する。
音声合成における意味情報の統合は,音声生成における言語モデル全体の性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-08-30T10:24:07Z) - WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling [65.30937248905958]
言語モデルの重要な構成要素は、高次元の自然信号を低次元の離散トークンに圧縮するトークン化器である。
本稿では,従来の音響領域におけるSOTA音響モデルよりもいくつかの利点があるWavTokenizerを紹介する。
WavTokenizerは、優れたUTMOSスコアを持つ最先端の再構築品質を実現し、本質的によりリッチなセマンティック情報を含んでいる。
論文 参考訳(メタデータ) (2024-08-29T13:43:36Z) - Large-scale unsupervised audio pre-training for video-to-speech
synthesis [64.86087257004883]
音声合成は、話者の無声映像から音声信号を再構成する作業である。
本稿では,24kHzで3,500時間以上のオーディオデータをエンコーダ・デコーダモデルでトレーニングすることを提案する。
次に、事前学習したデコーダを用いて、音声合成タスクの音声デコーダを初期化する。
論文 参考訳(メタデータ) (2023-06-27T13:31:33Z) - Masked Autoencoders that Listen [79.99280830830854]
本稿では,画像ベースMasked Autoencoders(MAE)の音声スペクトログラムからの自己教師型表現学習への簡単な拡張について検討する。
MAEにおけるTransformer encoder-decoderの設計に続いて、Audio-MAEはまず、ハイマスキング比でオーディオスペクトログラムパッチを符号化し、エンコーダ層を介して非マスキングトークンのみを供給します。
次にデコーダは、入力スペクトログラムを再構築するために、マスクトークンでパッドされたエンコードされたコンテキストを再注文し、デコードする。
論文 参考訳(メタデータ) (2022-07-13T17:59:55Z) - Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired
Speech Data [145.95460945321253]
本稿では,音響単位,すなわち擬似符号を用いたエンコーダ・デコーダネットワークのための2つの事前学習タスクを提案する。
提案したSpeech2Cは,デコーダを事前学習することなく,単語誤り率(WER)を19.2%削減できる。
論文 参考訳(メタデータ) (2022-03-31T15:33:56Z) - SoundStream: An End-to-End Neural Audio Codec [78.94923131038682]
本稿では,音声,音楽,一般音声を効率よく圧縮できる新しいニューラルオーディオシステムSoundStreamを紹介する。
SoundStreamは完全な畳み込みエンコーダ/デコーダネットワークと残留ベクトル量子化器に頼っている。
エンコーダまたはデコーダ側で、追加のレイテンシなしで、共同圧縮と拡張を行うことができます。
論文 参考訳(メタデータ) (2021-07-07T15:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。