論文の概要: A Self-explaining Neural Architecture for Generalizable Concept Learning
- arxiv url: http://arxiv.org/abs/2405.00349v1
- Date: Wed, 1 May 2024 06:50:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:27:08.172273
- Title: A Self-explaining Neural Architecture for Generalizable Concept Learning
- Title(参考訳): 一般化可能な概念学習のための自己説明型ニューラルネットワーク
- Authors: Sanchit Sinha, Guangzhi Xiong, Aidong Zhang,
- Abstract要約: 現在,SOTA の概念学習アプローチは,概念の忠実さの欠如と,概念の相互運用の限界という2つの大きな問題に悩まされている。
ドメイン間の概念学習のための新しい自己説明型アーキテクチャを提案する。
提案手法は,現在広く使われている4つの実世界のデータセットに対するSOTA概念学習手法に対して有効であることを示す。
- 参考スコア(独自算出の注目度): 29.932706137805713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the wide proliferation of Deep Neural Networks in high-stake applications, there is a growing demand for explainability behind their decision-making process. Concept learning models attempt to learn high-level 'concepts' - abstract entities that align with human understanding, and thus provide interpretability to DNN architectures. However, in this paper, we demonstrate that present SOTA concept learning approaches suffer from two major problems - lack of concept fidelity wherein the models fail to learn consistent concepts among similar classes and limited concept interoperability wherein the models fail to generalize learned concepts to new domains for the same task. Keeping these in mind, we propose a novel self-explaining architecture for concept learning across domains which - i) incorporates a new concept saliency network for representative concept selection, ii) utilizes contrastive learning to capture representative domain invariant concepts, and iii) uses a novel prototype-based concept grounding regularization to improve concept alignment across domains. We demonstrate the efficacy of our proposed approach over current SOTA concept learning approaches on four widely used real-world datasets. Empirical results show that our method improves both concept fidelity measured through concept overlap and concept interoperability measured through domain adaptation performance.
- Abstract(参考訳): 大規模アプリケーションにおけるディープニューラルネットワークの普及に伴い、意思決定プロセスの背後にある説明可能性への需要が高まっている。
概念学習モデルは、人間の理解と整合した抽象的な実体である高レベルの「概念」を学習しようと試み、それによってDNNアーキテクチャへの解釈可能性を提供する。
しかし,本論文では,モデルが類似クラス間の一貫した概念を学習できないような概念忠実性の欠如と,学習された概念を同じタスクのために新しいドメインに一般化できないような概念相互運用の限界という,現在のSOTA概念学習アプローチが大きな2つの問題に悩まされていることを実証する。
これらを念頭に置いて,ドメイン間の概念学習のための新しい自己説明型アーキテクチャを提案する。
一 代表的概念選択のための新しいコンセプト・サリエンシ・ネットワークを組み込むこと。
二 対照的な学習を利用して代表的領域不変概念を捉えること。
三 ドメイン間のコンセプトアライメントを改善するために、新しいプロトタイプベースのコンセプトグラウンドライゼーションを使用する。
提案手法は,現在広く使われている4つの実世界のデータセットに対するSOTA概念学習手法に対して有効であることを示す。
実験の結果,提案手法は,概念重なりとドメイン適応性能による概念相互運用による概念忠実度を両立させることがわかった。
関連論文リスト
- Understanding Inter-Concept Relationships in Concept-Based Models [12.229150338065828]
概念モデルによって学習された概念表現を分析し、これらのモデルが概念間の関係を正しく捉えているかどうかを理解する。
まず、最先端の概念に基づくモデルが、安定性と堅牢性に欠ける表現を生成することを実証的に示し、そのような手法は概念間の関係を捉えるのに失敗する。
そこで我々は,概念間関係を利用して概念介入の精度を向上させる新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-05-28T14:20:49Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - A survey on Concept-based Approaches For Model Improvement [2.1516043775965565]
概念は人間の思考基盤として知られている。
ディープニューラルネットワーク(DNN)における様々な概念表現とその発見アルゴリズムの体系的レビューと分類について述べる。
また,これらの手法を総合的に調査した最初の論文として,概念に基づくモデル改善文献について詳述する。
論文 参考訳(メタデータ) (2024-03-21T17:09:20Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPTは、概念知識を事前訓練された言語モデルに注入することを目的としている。
これは、事前訓練されたコンテキストで言及されたエンティティの概念を予測するために、外部エンティティの概念予測を利用する。
実験の結果,ConcEPTは概念強化事前学習により概念知識を向上することがわかった。
論文 参考訳(メタデータ) (2024-01-11T05:05:01Z) - Advancing Ante-Hoc Explainable Models through Generative Adversarial Networks [24.45212348373868]
本稿では,視覚的分類タスクにおけるモデル解釈可能性と性能を向上させるための新しい概念学習フレームワークを提案する。
本手法では, 教師なし説明生成器を一次分類器ネットワークに付加し, 対角訓練を利用する。
この研究は、タスク整合概念表現を用いた本質的に解釈可能なディープビジョンモデルを構築するための重要なステップを示す。
論文 参考訳(メタデータ) (2024-01-09T16:16:16Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
この研究は、アンテホック解釈可能性、特に概念ボトルネックモデル(CBM)をターゲットにしている。
我々のゴールは、人間の理解可能な概念を2段階の粒度で、高度に解釈可能な意思決定プロセスを認めるフレームワークを設計することである。
この枠組みでは、概念情報は全体像と一般的な非構造概念の類似性にのみ依存せず、画像シーンのパッチ固有の領域に存在するより粒度の細かい概念情報を発見・活用するために概念階層の概念を導入している。
論文 参考訳(メタデータ) (2023-10-03T14:57:31Z) - Interpretable Neural-Symbolic Concept Reasoning [7.1904050674791185]
概念に基づくモデルは、人間の理解可能な概念のセットに基づいてタスクを学習することでこの問題に対処することを目的としている。
本稿では,概念埋め込みに基づく最初の解釈可能な概念ベースモデルであるDeep Concept Reasoner (DCR)を提案する。
論文 参考訳(メタデータ) (2023-04-27T09:58:15Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
概念活性化ベクトル(Concept Activation Vectors, CAV)のクラスを含む概念的説明を紹介する。
次に、自動的に概念を抽出するアプローチと、それらの注意事項に対処するアプローチについて議論する。
最後に、このような概念に基づく説明が、合成設定や実世界の応用において有用であることを示すケーススタディについて論じる。
論文 参考訳(メタデータ) (2022-02-25T01:27:31Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
一般合成ゼロショット学習は、ゼロショット方式で属性オブジェクト対の合成概念を学習する手段である。
本稿では,これら2つの課題を統一的なフレームワークで解決するために,翻訳概念の埋め込み(translational concept embedded)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-20T21:27:51Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。