論文の概要: Optimized Drug Design using Multi-Objective Evolutionary Algorithms with SELFIES
- arxiv url: http://arxiv.org/abs/2405.00401v1
- Date: Wed, 1 May 2024 09:06:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:07:30.702602
- Title: Optimized Drug Design using Multi-Objective Evolutionary Algorithms with SELFIES
- Title(参考訳): SELFIESを用いた多目的進化アルゴリズムによる薬物設計の最適化
- Authors: Tomoya Hömberg, Sanaz Mostaghim, Satoru Hiwa, Tomoyuki Hiroyasu,
- Abstract要約: この目的のために,多目的進化アルゴリズム,NSGA-II,NSGA-III,MOEA/Dをデプロイする。
QEDとSAのスコアに加えて、GuacaMolベンチマークの多目的タスクセットを用いて化合物を最適化する。
- 参考スコア(独自算出の注目度): 1.124958340749622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer aided drug design is a promising approach to reduce the tremendous costs, i.e. time and resources, for developing new medicinal drugs. It finds application in aiding the traversal of the vast chemical space of potentially useful compounds. In this paper, we deploy multi-objective evolutionary algorithms, namely NSGA-II, NSGA-III, and MOEA/D, for this purpose. At the same time, we used the SELFIES string representation method. In addition to the QED and SA score, we optimize compounds using the GuacaMol benchmark multi-objective task sets. Our results indicate that all three algorithms show converging behavior and successfully optimize the defined criteria whilst differing mainly in the number of potential solutions found. We observe that novel and promising candidates for synthesis are discovered among obtained compounds in the Pareto-sets.
- Abstract(参考訳): コンピュータ・エイズド・ドラッグ・デザインは、新しい医薬品を開発するための膨大なコスト、すなわち時間と資源を削減するための有望なアプローチである。
これは、潜在的に有用な化合物の広大な化学空間の移動を支援するために応用される。
本稿では,この目的のために,多目的進化アルゴリズム,NSGA-II,NSGA-III,MOEA/Dをデプロイする。
同時に,SELFIES文字列表現法を用いた。
QEDとSAのスコアに加えて、GuacaMolベンチマークの多目的タスクセットを用いて化合物を最適化する。
以上の結果から, 3つのアルゴリズムはいずれも収束挙動を示し, 定義基準の最適化に成功していることがわかった。
パレート集合において得られた化合物のうち、新規で有望な合成候補が発見されている。
関連論文リスト
- Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search [61.08720171136229]
本稿では,3つの革新的手法のハイブリッド化に基づく問題に対する新しいアルゴリズムSMARTを提案する。
これらの2つの手法は動的プログラミングに基づいており、評価のために選択された連立関係とアルゴリズムの性能の強力な関係を示す。
我々の手法は、問題にアプローチする新しい方法と、その分野に新しいレベルの精度をもたらす。
論文 参考訳(メタデータ) (2024-07-22T23:24:03Z) - Latent Chemical Space Searching for Plug-in Multi-objective Molecule Generation [9.442146563809953]
本研究では, 標的親和性, 薬物類似性, 合成性に関連する目的を組み込んだ, 汎用的な「プラグイン」分子生成モデルを構築した。
我々はPSO-ENPを多目的分子生成と最適化のための最適変種として同定する。
論文 参考訳(メタデータ) (2024-04-10T02:37:24Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
設計したハイパーカーネルを利用して,構造パラメータを直接生成することを提案する。
我々は1次元または3次元の畳み込みを伴う画素レベルの分類と画像レベルの分類を別々に行う3種類のネットワークを得る。
6つの公開データセットに関する一連の実験は、提案手法が最先端の結果を得ることを示した。
論文 参考訳(メタデータ) (2023-04-23T17:27:40Z) - Reinforced Genetic Algorithm for Structure-based Drug Design [38.134929249388406]
SBDD(Structure-based drug design)は、疾患関連タンパク質(ターゲット)に結合する分子を見つけることにより、薬物候補を見つけることを目的とした薬物設計である。
本稿では,ニューラルネットワークを用いた遺伝的アルゴリズム(Reinforced Genetic Algorithm, RGA)を提案する。
論文 参考訳(メタデータ) (2022-11-28T22:59:46Z) - ToDD: Topological Compound Fingerprinting in Computer-Aided Drug
Discovery [8.620443111346523]
コンピュータ支援薬物発見(CADD)において、仮想スクリーニングは、化合物の大きなライブラリーにおいて分子標的に結合する可能性が最も高い薬物候補を特定するために用いられる。
この問題に対処するため,多次元ベクトルとして化合物のトポロジ的指紋を生成する多パラメータ持続性(MP)ホモロジーを用いた新しい手法を開発した。
プレトレーニングトトリプルトネットワークのマージン損失の微調整は, 組込み空間における化合物の相違や, 有効な薬物候補になる可能性のランク付けにおいて, 高い競争力を発揮することを示す。
論文 参考訳(メタデータ) (2022-11-07T19:00:05Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Multi-Objective GFlowNets [59.16787189214784]
本稿では,多目的最適化の文脈において,多様な候補を生成する問題について検討する。
薬物発見やマテリアルデザインといった機械学習の多くの応用において、目標は、競合する可能性のある目標のセットを同時に最適化する候補を生成することである。
GFlowNetsをベースとした多目的GFlowNets(MOGFNs)を提案する。
論文 参考訳(メタデータ) (2022-10-23T16:15:36Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
本稿では,RNA配列設計に強化学習を適用した新しいベンチマークを提案する。このベンチマークでは,目的関数を配列の二次構造における自由エネルギーとして定義する。
本稿では,これらのアルゴリズムに対して行うアブレーション解析の結果と,バッチ間でのアルゴリズムの性能を示すグラフを示す。
論文 参考訳(メタデータ) (2021-11-05T02:54:06Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T17:38:48Z) - Evolutionary Multi Objective Optimization Algorithm for Community
Detection in Complex Social Networks [10.855626765597005]
ネットワーク内のコミュニティ構造を見つけるために,3目的の定式化の2つのバリエーションを提案する。
4つのベンチマークネットワークデータセットで実験を行う。
論文 参考訳(メタデータ) (2020-05-07T00:13:31Z) - DeepGS: Deep Representation Learning of Graphs and Sequences for
Drug-Target Binding Affinity Prediction [8.292330541203647]
本稿では、ディープニューラルネットワークを用いて、アミノ酸やSMILES配列から局所的な化学コンテキストを抽出する、DeepGSと呼ばれる新しいエンドツーエンド学習フレームワークを提案する。
我々は提案手法を,KronRLS,Sim,DeepDTA,DeepCPIといった最先端モデルと比較するための広範な実験を行った。
論文 参考訳(メタデータ) (2020-03-31T01:35:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。