Fractional domain wall statistics in spin chains with anomalous symmetries
- URL: http://arxiv.org/abs/2405.00439v1
- Date: Wed, 1 May 2024 10:45:01 GMT
- Title: Fractional domain wall statistics in spin chains with anomalous symmetries
- Authors: Jose Garre Rubio, Norbert Schuch,
- Abstract summary: We study the statistics of domain wall excitations in quantum spin chains.
We find that the presence of an anomalous MPU symmetry gives rise to domain wall excitations which behave neither as bosons nor as fermions, but rather exhibit fractional statistics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the statistics of domain wall excitations in quantum spin chains. We focus on systems with finite symmetry groups represented by matrix product unitaries (MPUs), i.e. finite depth quantum circuits. Such symmetries can be anomalous, in which case gapped phases which they support must break the symmetry. The lowest lying excitations of those systems are thus domain wall excitations. We investigate the behavior of these domain walls under exchange, and find that they can exhibit non-trivial exchange statistics. This statistics is completely determined by the anomaly of the symmetry, and we provide a direct relation between the known classification of MPU symmetry actions on ground states and the domain wall statistics. Already for the simplest case of a $\mathbb Z_2$ symmetry, we obtain that the presence of an anomalous MPU symmetry gives rise to domain wall excitations which behave neither as bosons nor as fermions, but rather exhibit fractional statistics. Finally, we show that the exchange statistics of domain walls is a physically accessible quantity, by devising explicit measurement operators through which it can be determined.
Related papers
- Diagnosing Strong-to-Weak Symmetry Breaking via Wightman Correlators [20.572965801171225]
Recent developments have extended the discussion of symmetry and its breaking to mixed states.
We propose the Wightman correlator as an alternative diagnostic tool.
arXiv Detail & Related papers (2024-10-12T02:04:40Z) - Anomalous symmetry protected blockade of skin effect in one-dimensional non-Hermitian lattice systems [20.4728241808175]
We present a theorem which shows that the combined spatial reflection symmetry can be considered as a criterion in one-dimensional non-Hermitian systems.
Our results reveal a profound connection between the symmetry and the fate of NHSE.
arXiv Detail & Related papers (2024-07-29T07:57:59Z) - Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect [0.0]
We show how, by tuning the initial state, the symmetry dynamics in free fermionic systems can display much richer behaviour than seen previously.
In particular, for certain classes of initial states, including ground states of free fermionic models with long-range couplings, the entanglement asymmetry can exhibit multiple crossings.
arXiv Detail & Related papers (2024-05-07T15:57:45Z) - Parafermions with symmetry-protected non-Abelian statistics [2.417762825674103]
We extend the concept of SPNA statistics to strongly-correlated systems which host parafermion zero modes (PZMs)
We unveil a generic unitary symmetry mechanism that protects PZMs from local couplings.
We prove rigorously that the PZMs intrinsically obey SPNA statistics.
arXiv Detail & Related papers (2024-03-14T17:44:22Z) - Non-equilibrium entanglement asymmetry for discrete groups: the example
of the XY spin chain [0.0]
The entanglement asymmetry is a novel quantity that, using entanglement methods, measures how much a symmetry is broken in a part of an extended quantum system.
We consider the XY spin chain, in which the ground state spontaneously breaks the $mathbbZ$ spin parity symmetry in the ferromagnetic phase.
We thoroughly investigate the non-equilibrium dynamics of this symmetry after a global quantum quench, generalising known results for the standard order parameter.
arXiv Detail & Related papers (2023-07-13T17:01:38Z) - Reconstruction of Quantum Particle Statistics: Bosons, Fermions, and Transtatistics [0.0]
We classify quantum particle statistics based on operationally well-motivated assumptions.
We develop a complete characterization, which includes bosons and fermions as basic statistics with minimal symmetry.
arXiv Detail & Related papers (2023-06-09T14:22:38Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Quantum Mechanics as a Theory of Incompatible Symmetries [77.34726150561087]
We show how classical probability theory can be extended to include any system with incompatible variables.
We show that any probabilistic system (classical or quantal) that possesses incompatible variables will show not only uncertainty, but also interference in its probability patterns.
arXiv Detail & Related papers (2022-05-31T16:04:59Z) - Approximately Equivariant Networks for Imperfectly Symmetric Dynamics [24.363954435050264]
We find that our models can outperform both baselines with no symmetry bias and baselines with overly strict symmetry in both simulated turbulence domains and real-world multi-stream jet flow.
arXiv Detail & Related papers (2022-01-28T07:31:28Z) - Probing symmetries of quantum many-body systems through gap ratio
statistics [0.0]
We extend the study of the gap ratio distribution P(r) to the case where discrete symmetries are present.
We present a large set of applications in many-body physics, ranging from quantum clock models and anyonic chains to periodically-driven spin systems.
arXiv Detail & Related papers (2020-08-25T17:11:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.