論文の概要: Feature-Aware Noise Contrastive Learning For Unsupervised Red Panda Re-Identification
- arxiv url: http://arxiv.org/abs/2405.00468v1
- Date: Wed, 1 May 2024 12:08:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 15:47:41.658499
- Title: Feature-Aware Noise Contrastive Learning For Unsupervised Red Panda Re-Identification
- Title(参考訳): 教師なしレッドパンダ再同定のための特徴認識型ノイズコントラスト学習
- Authors: Jincheng Zhang, Qijun Zhao, Tie Liu,
- Abstract要約: 教師なし学習ソリューションを探索するための特徴認識型ノイズコントラスト学習手法を提案する。
FANCLは、重要な特徴を隠蔽するノイズ画像を生成するために、Feature-Aware Noise Additionモジュールを使用している。
一組のレッドパンダ画像の実験結果から、FANCLはいくつかの関連する最先端の教師なし手法より優れていることが証明された。
- 参考スコア(独自算出の注目度): 11.607204598710046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To facilitate the re-identification (Re-ID) of individual animals, existing methods primarily focus on maximizing feature similarity within the same individual and enhancing distinctiveness between different individuals. However, most of them still rely on supervised learning and require substantial labeled data, which is challenging to obtain. To avoid this issue, we propose a Feature-Aware Noise Contrastive Learning (FANCL) method to explore an unsupervised learning solution, which is then validated on the task of red panda re-ID. FANCL employs a Feature-Aware Noise Addition module to produce noised images that conceal critical features and designs two contrastive learning modules to calculate the losses. Firstly, a feature consistency module is designed to bridge the gap between the original and noised features. Secondly, the neural networks are trained through a cluster contrastive learning module. Through these more challenging learning tasks, FANCL can adaptively extract deeper representations of red pandas. The experimental results on a set of red panda images collected in both indoor and outdoor environments prove that FANCL outperforms several related state-of-the-art unsupervised methods, achieving high performance comparable to supervised learning methods.
- Abstract(参考訳): 個々の動物の再同定(Re-ID)を容易にするため、既存の手法は主に同一個体内での特徴的類似性を最大化し、異なる個体間の識別性を増強することに焦点を当てている。
しかし、それらの多くは依然として教師付き学習に依存しており、かなりのラベル付きデータを必要とするため、入手は困難である。
この問題を回避するために,教師なし学習ソリューションを探索するFANCL(Feature-Aware Noise Contrastive Learning)手法を提案する。
FANCLは、重要な特徴を隠蔽し、損失を計算するために2つの対照的な学習モジュールを設計するノイズ画像を生成するために、特徴認識ノイズ付加モジュールを使用している。
第一に、機能一貫性モジュールは、オリジナルの機能とノイズのある機能の間のギャップを埋めるために設計されている。
次に、ニューラルネットワークはクラスタコントラスト学習モジュールを通じてトレーニングされる。
これらのより困難な学習タスクを通じて、FANCLはレッドパンダのより深い表現を適応的に抽出することができる。
室内および屋外の両方で収集されたレッドパンダ画像に対する実験結果は、FANCLがいくつかの非教師付き手法よりも優れており、教師付き学習法に匹敵する高い性能を達成していることを証明している。
関連論文リスト
- CamoTeacher: Dual-Rotation Consistency Learning for Semi-Supervised Camouflaged Object Detection [58.07124777351955]
本稿では,Dual-Rotation Consistency Learning(DRCL)を利用した新しい半教師付きCODフレームワークであるCamoTeacherを紹介する。
DRCLは、画素レベルとインスタンスレベルの回転ビューの一貫性を活用することで、擬似ラベルノイズを最小化する。
私たちのコードはまもなく利用可能になります。
論文 参考訳(メタデータ) (2024-08-15T09:33:43Z) - LeOCLR: Leveraging Original Images for Contrastive Learning of Visual Representations [4.680881326162484]
画像分類やオブジェクト検出などの下流タスクにおける教師あり学習よりも優れている。
対照的な学習における一般的な強化手法は、ランダムな収穫とそれに続くリサイズである。
本稿では,新しいインスタンス識別手法と適応型損失関数を用いたフレームワークであるLeOCLRを紹介する。
論文 参考訳(メタデータ) (2024-03-11T15:33:32Z) - A Dual-branch Self-supervised Representation Learning Framework for
Tumour Segmentation in Whole Slide Images [12.961686610789416]
自己教師付き学習(SSL)は、スライドイメージ全体のアノテーションオーバーヘッドを低減する代替ソリューションとして登場した。
これらのSSLアプローチは、識別画像の特徴を学習する際の性能を制限するマルチレゾリューションWSIを扱うために設計されていない。
マルチ解像度WSIから画像特徴を効果的に学習できるDSF-WSI(Dual-branch SSL Framework for WSI tumour segmentation)を提案する。
論文 参考訳(メタデータ) (2023-03-20T10:57:28Z) - Learning Progressive Modality-shared Transformers for Effective
Visible-Infrared Person Re-identification [27.75907274034702]
我々は,能率VI-ReIDのためのPMT(Progressive Modality-Shared Transformer)という新しいディープラーニングフレームワークを提案する。
モダリティギャップの負の効果を低減するために、まず、グレースケールの画像を補助的なモダリティとして捉え、進歩的な学習戦略を提案する。
クラス内差が大きく,クラス間差が少ない問題に対処するために,識別中心損失を提案する。
論文 参考訳(メタデータ) (2022-12-01T02:20:16Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
本稿では,Pose Estimationを補助学習タスクとして活用して,エンドツーエンドフレームワークにおけるVI-ReIDタスクを支援する。
これら2つのタスクを相互に有利な方法で共同でトレーニングすることにより、高品質なモダリティ共有とID関連の特徴を学習する。
2つのベンチマークVI-ReIDデータセットの実験結果から,提案手法は一定のマージンで最先端の手法を継続的に改善することが示された。
論文 参考訳(メタデータ) (2022-01-11T09:44:00Z) - Contrastive Learning based Hybrid Networks for Long-Tailed Image
Classification [31.647639786095993]
画像表現の教師付きコントラスト損失と、分類器を学習するためのクロスエントロピー損失からなる新しいハイブリッドネットワーク構造を提案する。
3つの長尾分類データセットに関する実験は、長尾分類における比較学習に基づくハイブリッドネットワークの提案の利点を示している。
論文 参考訳(メタデータ) (2021-03-26T05:22:36Z) - Unsupervised Pretraining for Object Detection by Patch Reidentification [72.75287435882798]
教師なし表現学習は、オブジェクトディテクタの事前トレーニング表現で有望なパフォーマンスを実現します。
本研究では,オブジェクト検出のための簡易かつ効果的な表現学習手法であるパッチ再識別(Re-ID)を提案する。
私たちの方法は、トレーニングの反復やデータパーセンテージなど、すべての設定でCOCOの同等を大幅に上回ります。
論文 参考訳(メタデータ) (2021-03-08T15:13:59Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z) - Attentive WaveBlock: Complementarity-enhanced Mutual Networks for
Unsupervised Domain Adaptation in Person Re-identification and Beyond [97.25179345878443]
本稿では,新しい軽量モジュールであるAttentive WaveBlock (AWB)を提案する。
AWBは相互学習の二重ネットワークに統合され、相互学習の相補性を高め、擬似ラベルのノイズをさらに抑えることができる。
実験により, 提案手法は, 複数のUDA人物再識別タスクを大幅に改善し, 最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-06-11T15:40:40Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
コントラスト学習は教師なし表現学習に革命をもたらした。
現在のコントラストモデルでは、前景オブジェクトのローカライズには効果がない。
本稿では,背景変化を学習するためのデータ駆動型手法を提案する。
論文 参考訳(メタデータ) (2020-04-14T16:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。