論文の概要: From Empirical Observations to Universality: Dynamics of Deep Learning with Inputs Built on Gaussian mixture
- arxiv url: http://arxiv.org/abs/2405.00642v1
- Date: Wed, 1 May 2024 17:10:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 15:07:37.601123
- Title: From Empirical Observations to Universality: Dynamics of Deep Learning with Inputs Built on Gaussian mixture
- Title(参考訳): 経験的観察から普遍性へ:ガウス混合に基づく入力によるディープラーニングのダイナミクス
- Authors: Jaeyong Bae, Hawoong Jeong,
- Abstract要約: 本研究は,ガウス混合(GM)の構造的特徴を示す入力を用いてニューラルネットワークの力学を掘り下げることにより,ディープラーニングにおける理論的枠組みの範囲を広げるものである。
我々は、GM構造入力下のニューラルネットワークのダイナミクスが、単純なガウス構造に基づく従来の理論の予測からどのように分岐するかを解析した。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study broadens the scope of theoretical frameworks in deep learning by delving into the dynamics of neural networks with inputs that demonstrate the structural characteristics to Gaussian Mixture (GM). We analyzed how the dynamics of neural networks under GM-structured inputs diverge from the predictions of conventional theories based on simple Gaussian structures. A revelation of our work is the observed convergence of neural network dynamics towards conventional theory even with standardized GM inputs, highlighting an unexpected universality. We found that standardization, especially in conjunction with certain nonlinear functions, plays a critical role in this phenomena. Consequently, despite the complex and varied nature of GM distributions, we demonstrate that neural networks exhibit asymptotic behaviors in line with predictions under simple Gaussian frameworks.
- Abstract(参考訳): 本研究は,ガウス混合(GM)の構造的特徴を示す入力を用いて,ニューラルネットワークの力学を掘り下げることにより,ディープラーニングにおける理論的枠組みの範囲を広げる。
我々は、GM構造入力下のニューラルネットワークのダイナミクスが、単純なガウス構造に基づく従来の理論の予測からどのように分岐するかを解析した。
我々の研究は、GM入力が標準化されても、従来の理論に対するニューラルネットワークのダイナミクスの観測的収束であり、予期せぬ普遍性を浮き彫りにしている。
標準化は、特にある種の非線形関数とともに、この現象において重要な役割を果たすことが判明した。
その結果、GM分布の複雑で多様な性質にもかかわらず、ニューラルネットワークは単純なガウスの枠組みの下での予測と一致して漸近的な振る舞いを示すことを示した。
関連論文リスト
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
本研究では,ニューラルネットワークをアンサンブル手法として活用することを検討する。
低多様性のアンサンブルを学習するリスクを動機として,ベースモデル予測をランダムにドロップすることでモデルの正規化を提案する。
このアプローチはアンサンブル内の多様性を低くし、オーバーフィッティングを減らし、一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-10-06T15:25:39Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Sparsity-aware generalization theory for deep neural networks [12.525959293825318]
本稿では、ディープフィードフォワードReLUネットワークの一般化を解析するための新しいアプローチを提案する。
空間性と一般化の基本的なトレードオフを示す。
論文 参考訳(メタデータ) (2023-07-01T20:59:05Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - An Information-Theoretic Framework for Supervised Learning [22.280001450122175]
後悔とサンプルの複雑さという独自の概念を持つ新しい情報理論フレームワークを提案する。
本稿では、ReLUアクティベーションユニットを用いたディープニューラルネットワークによって生成されたデータから学習する際のサンプルの複雑さについて検討する。
我々は、ランダムな単層ニューラルネットワークの実験的な解析により、理論結果を裏付けることで結論付ける。
論文 参考訳(メタデータ) (2022-03-01T05:58:28Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Out-of-Distribution Generalization in Kernel Regression [21.958028127426196]
トレーニングとテストの分布が異なる場合のカーネル回帰の一般化について検討する。
与えられたカーネルの分布間のミスマッチを定量化する重なり行列を同定する。
本研究では,データ予算に対するトレーニングとテストの配分を最適化する手法を開発し,そのシフトの下で最良のケースと最悪のケースの一般化を求める。
論文 参考訳(メタデータ) (2021-06-04T04:54:25Z) - The Gaussian equivalence of generative models for learning with shallow
neural networks [30.47878306277163]
本研究では,事前学習した生成モデルから得られたデータに基づいて学習したニューラルネットワークの性能について検討する。
この等価性を裏付ける厳密で解析的で数値的な証拠を3本提供します。
これらの結果は、現実的なデータを持つ機械学習モデルの理論研究への有効な道を開く。
論文 参考訳(メタデータ) (2020-06-25T21:20:09Z) - Extrapolatable Relational Reasoning With Comparators in Low-Dimensional
Manifolds [7.769102711230249]
本稿では,現在のニューラルネットワークアーキテクチャと容易に融合可能な,神経科学にインスパイアされた誘導バイアスモジュールを提案する。
この誘導バイアスを持つニューラルネットは、様々な関係推論タスクにおいて、O.o.d一般化性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2020-06-15T19:09:13Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。