Scenarios Engineering driven Autonomous Transportation in Open-Pit Mines
- URL: http://arxiv.org/abs/2405.00690v1
- Date: Fri, 15 Mar 2024 02:26:55 GMT
- Title: Scenarios Engineering driven Autonomous Transportation in Open-Pit Mines
- Authors: Siyu Teng, Xuan Li, Yuchen Li, Lingxi Li, Yunfeng Ai, Long Chen,
- Abstract summary: A novel scenarios engineering (SE) methodology for the autonomous mining truck is proposed for open-pit mines.
This research addresses the unique challenges of autonomous transportation in open-pit mining, promoting productivity, safety, and performance in mining operations.
- Score: 21.359823385387937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One critical bottleneck that impedes the development and deployment of autonomous transportation in open-pit mines is guaranteed robustness and trustworthiness in prohibitively extreme scenarios. In this research, a novel scenarios engineering (SE) methodology for the autonomous mining truck is proposed for open-pit mines. SE increases the trustworthiness and robustness of autonomous trucks from four key components: Scenario Feature Extractor, Intelligence & Index (I&I), Calibration & Certification (C&C), and Verification & Validation (V&V). Scenario feature extractor is a comprehensive pipeline approach that captures complex interactions and latent dependencies in complex mining scenarios. I&I effectively enhances the quality of the training dataset, thereby establishing a solid foundation for autonomous transportation in mining areas. C&C is grounded in the intrinsic regulation, capabilities, and contributions of the intelligent systems employed in autonomous transportation to align with traffic participants in the real world and ensure their performance through certification. V&V process ensures that the autonomous transportation system can be correctly implemented, while validation focuses on evaluating the ability of the well-trained model to operate efficiently in the complex and dynamic conditions of the open-pit mines. This methodology addresses the unique challenges of autonomous transportation in open-pit mining, promoting productivity, safety, and performance in mining operations.
Related papers
- Generative AI for Autonomous Driving: Frontiers and Opportunities [145.6465312554513]
This survey delivers a comprehensive synthesis of the emerging role of GenAI across the autonomous driving stack.<n>We begin by distilling the principles and trade-offs of modern generative modeling, encompassing VAEs, GANs, Diffusion Models, and Large Language Models.<n>We categorize practical applications, such as synthetic data generalization, end-to-end driving strategies, high-fidelity digital twin systems, smart transportation networks, and cross-domain transfer to embodied AI.
arXiv Detail & Related papers (2025-05-13T17:59:20Z) - Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping [2.9109581496560044]
This paper examines the robustness of benchmark deep reinforcement learning (RL) algorithms, implemented for inland waterway transport (IWT) within an autonomous shipping simulator.
We show that a model-free approach can achieve an adequate policy in the simulator, successfully navigating port environments never encountered during training.
arXiv Detail & Related papers (2024-11-07T17:55:07Z) - OPTIMA: Optimized Policy for Intelligent Multi-Agent Systems Enables Coordination-Aware Autonomous Vehicles [9.41740133451895]
This work introduces OPTIMA, a novel distributed reinforcement learning framework for cooperative autonomous vehicle tasks.
Our goal is to improve the generality and performance of CAVs in highly complex and crowded scenarios.
arXiv Detail & Related papers (2024-10-09T03:28:45Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Scenario Engineering for Autonomous Transportation: A New Stage in Open-Pit Mines [16.597043030815097]
This research introduces a novel paradigm that integrates Scenario Engineering with autonomous transportation systems.
This paradigm has been validated in two famous open-pit mines.
arXiv Detail & Related papers (2024-03-15T02:36:27Z) - When Mining Electric Locomotives Meet Reinforcement Learning [12.757241771695652]
A mining electric locomotive control method that can adapt to different complex mining environments is needed.
In this paper, we propose an improved epsilon-greedy (IEG) algorithm which can better balance the exploration and exploitation.
The simulation results show that this method ensures the locomotives following the front vehicle safely and responding promptly in the event of sudden obstacles on the road.
arXiv Detail & Related papers (2023-11-14T13:29:01Z) - FusionPlanner: A Multi-task Motion Planner for Mining Trucks via
Multi-sensor Fusion [16.015095148145214]
A comprehensive paradigm for unmanned transportation in open-pit mines is proposed in this research.
We propose a multi-task motion planning algorithm, called FusionPlanner, for autonomous mining trucks by the multi-sensor fusion method.
A novel benchmark called MiningNav offers three validation approaches to evaluate the trustworthiness and robustness of well-trained algorithms in transportation roads of open-pit mines.
arXiv Detail & Related papers (2023-08-14T04:18:07Z) - Assurance for Autonomy -- JPL's past research, lessons learned, and
future directions [56.32768279109502]
Autonomy is required when a wide variation in circumstances precludes responses being pre-planned.
Mission assurance is a key contributor to providing confidence, yet assurance practices honed over decades of spaceflight have relatively little experience with autonomy.
Researchers in JPL's software assurance group have been involved in the development of techniques specific to the assurance of autonomy.
arXiv Detail & Related papers (2023-05-16T18:24:12Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.