論文の概要: Oxygen vacancies modulated VO2 for neurons and Spiking Neural Network construction
- arxiv url: http://arxiv.org/abs/2405.00700v1
- Date: Tue, 16 Apr 2024 04:18:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-05 17:54:32.169511
- Title: Oxygen vacancies modulated VO2 for neurons and Spiking Neural Network construction
- Title(参考訳): ニューロンに対する酸素空孔変調VO2とスパイキングニューラルネットワークの構築
- Authors: Liang Li, Ting Zhou, Tong Liu, Zhiwei Liu, Yaping Li, Shuo Wu, Shanguang Zhao, Jinglin Zhu, Meiling Liu, Zhihan Lin, Bowen Sun, Jianjun Li, Fangwen Sun, Chongwen Zou,
- Abstract要約: 本研究では,酸素空孔VO2膜(VO2-x)を作製し,スパイキングニューラルネットワーク(SNN)構築のためのVO2-xニューロンデバイスを作製する。
その結果, ニューロンデバイスは低電圧で動作可能であり, 処理速度は向上した。
MNISTデータセットでトレーニングされたVO2-xベースのバックプロパゲーションSNN(BP-SNNs)システムは、画像認識において優れた精度を示す。
- 参考スコア(独自算出の注目度): 23.20545677048778
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neuronal devices are the basic building blocks for neuromorphic computing systems, which have been motivated by realistic brain emulation. Aiming for these applications, various device concepts have been proposed to mimic the neuronal dynamics and functions. While till now, the artificial neuron devices with high efficiency, high stability and low power consumption are still far from practical application. Due to the special insulator-metal phase transition, Vanadium Dioxide (VO2) has been considered as an idea candidate for neuronal device fabrication. However, its intrinsic insulating state requires the VO2 neuronal device to be driven under large bias voltage, resulting in high power consumption and low frequency. Thus in the current study, we have addressed this challenge by preparing oxygen vacancies modulated VO2 film(VO2-x) and fabricating the VO2-x neuronal devices for Spiking Neural Networks (SNNs) construction. Results indicate the neuron devices can be operated under lower voltage with improved processing speed. The proposed VO2-x based back-propagation SNNs (BP-SNNs) system, trained with the MNIST dataset, demonstrates excellent accuracy in image recognition. Our study not only demonstrates the VO2-x based neurons and SNN system for practical application, but also offers an effective way to optimize the future neuromorphic computing systems by defect engineering strategy.
- Abstract(参考訳): 人工ニューロンデバイスは、現実的な脳エミュレーションによって動機付けられた神経形コンピューティングシステムの基本的な構成要素である。
これらの応用を目指して、ニューロンのダイナミクスや機能を模倣する様々なデバイス概念が提案されている。
これまでのところ、高効率、高安定性、低消費電力の人工ニューロンデバイスは実用には程遠い。
特別な絶縁体-金属相転移のため、二酸化バナジウム(VO2)は神経デバイス製造の候補と考えられている。
しかし、その固有の絶縁状態は、VO2ニューロンデバイスを大きなバイアス電圧で駆動することを必要とし、高い消費電力と低い周波数をもたらす。
そこで本研究では,酸素空孔変調VO2膜(VO2-x)を作製し,スパイキングニューラルネットワーク(SNN)構築のためのVO2-xニューロンデバイスを作製することによって,この問題に対処した。
その結果, ニューロンデバイスは低電圧で動作可能であり, 処理速度は向上した。
MNISTデータセットでトレーニングしたVO2-xベースのバックプロパゲーションSNN(BP-SNNs)システムは、画像認識において優れた精度を示す。
本研究は, VO2-x系ニューロンとSNNシステムを実用化するだけでなく, 欠陥工学的戦略により, 将来の神経形コンピューティングシステムを最適化する効果的な方法も提供する。
関連論文リスト
- Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Complex Dynamic Neurons Improved Spiking Transformer Network for
Efficient Automatic Speech Recognition [8.998797644039064]
リークインテグレーテッド・アンド・ファイア(LIF)ニューロンを用いたスパイクニューラルネットワーク(SNN)は、音声認識(ASR)タスクで一般的に用いられている。
ここでは、スパイキングトランスから生成された逐次パターンを後処理する4種類の神経力学を紹介する。
その結果,DyTr-SNNは音素誤り率の低下,計算コストの低下,ロバスト性の向上など,非トイ自動音声認識タスクをうまく処理できることがわかった。
論文 参考訳(メタデータ) (2023-02-02T16:20:27Z) - SIT: A Bionic and Non-Linear Neuron for Spiking Neural Network [12.237928453571636]
スパイキングニューラルネットワーク(SNN)は、時間的情報処理能力と消費電力の低さから、研究者の関心を喚起している。
現在の最先端の手法は、ニューロンが単純な Leaky-Integrate-and-Fire (LIF) モデルに基づいて構築されているため、生物学的な可視性と性能を制限している。
高レベルの動的複雑さのため、現代のニューロンモデルがSNNの実践で実装されることはめったにない。
論文 参考訳(メタデータ) (2022-03-30T07:50:44Z) - Energy-Efficient High-Accuracy Spiking Neural Network Inference Using
Time-Domain Neurons [0.18352113484137625]
本稿では低出力高線形時間領域I&Fニューロン回路を提案する。
提案されたニューロンは、MNIST推論において4.3倍のエラー率をもたらす。
提案したニューロン回路で消費される電力は1ニューロンあたり0.230uWとシミュレートされ、これは既存の電圧領域ニューロンよりも桁違いに低い。
論文 参考訳(メタデータ) (2022-02-04T08:24:03Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Improving Spiking Neural Network Accuracy Using Time-based Neurons [0.24366811507669117]
アナログニューロンを用いた低消費電力スパイクニューラルネットワークに基づくニューロモルフィックコンピューティングシステムの研究が注目されている。
技術のスケールダウンに伴い、アナログニューロンはスケールが難しく、電圧ヘッドルーム/ダイナミックレンジの減少と回路の非線形性に悩まされる。
本稿では,28nmプロセスで設計した既存の電流ミラー型電圧ドメインニューロンの非線形挙動をモデル化し,ニューロンの非線形性の影響によりSNN推定精度を著しく劣化させることができることを示す。
本稿では,時間領域のスパイクを処理し,線形性を大幅に向上させる新しいニューロンを提案する。
論文 参考訳(メタデータ) (2022-01-05T00:24:45Z) - Efficient Neuromorphic Signal Processing with Loihi 2 [6.32784133039548]
本稿では, 短時間フーリエ変換(STFT)を従来のSTFTの47倍の出力帯域幅で計算する方法を示す。
また、音声分類タスクのためのRFニューロンのトレーニングのためのバックプロパゲーションを用いた有望な予備結果を示す。
論文 参考訳(メタデータ) (2021-11-05T22:37:05Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。