論文の概要: Adapting Open-Source Large Language Models for Cost-Effective, Expert-Level Clinical Note Generation with On-Policy Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2405.00715v2
- Date: Wed, 5 Jun 2024 04:03:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 00:20:37.857132
- Title: Adapting Open-Source Large Language Models for Cost-Effective, Expert-Level Clinical Note Generation with On-Policy Reinforcement Learning
- Title(参考訳): オンライン強化学習による費用効果・エキスパートレベル臨床ノート作成のためのオープンソース大規模言語モデルの適用
- Authors: Hanyin Wang, Chufan Gao, Bolun Liu, Qiping Xu, Guleid Hussein, Mohamad El Labban, Kingsley Iheasirim, Hariprasad Korsapati, Chuck Outcalt, Jimeng Sun,
- Abstract要約: 本研究では,オープンソースのLLaMA-213億パラメータモデルに対する包括的ドメイン・タスク特化プロセスを提案する。
教師モデルとしてGemini 1.0 Proを用いて、政治強化学習を行うための新しいアプローチであるDistillDirectを導入する。
我々のモデルであるLLaMA-Clinicは、医師が作成したものと同等の品質の臨床メモを生成することができる。
- 参考スコア(独自算出の注目度): 19.08691249610632
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Proprietary Large Language Models (LLMs) such as GPT-4 and Gemini have demonstrated promising capabilities in clinical text summarization tasks. However, due to patient data privacy concerns and computational costs, many healthcare providers prefer using small, locally-hosted models over external generic LLMs. This study presents a comprehensive domain- and task-specific adaptation process for the open-source LLaMA-2 13 billion parameter model, enabling it to generate high-quality clinical notes from outpatient patient-doctor dialogues. Our process incorporates continued pre-training, supervised fine-tuning, and reinforcement learning from both AI and human feedback. We introduced a new approach, DistillDirect, for performing on-policy reinforcement learning with Gemini 1.0 Pro as the teacher model. Our resulting model, LLaMA-Clinic, can generate clinical notes comparable in quality to those authored by physicians. In a blinded physician reader study, the majority (90.4%) of individual evaluations rated the notes generated by LLaMA-Clinic as "acceptable" or higher across all three criteria: real-world readiness, completeness, and accuracy. In the more challenging "Assessment and Plan" section, LLaMA-Clinic scored higher (4.2/5) in real-world readiness than physician-authored notes (4.1/5). Our cost analysis for inference shows that our LLaMA-Clinic model achieves a 4.375-fold cost reduction compared to an external generic LLM service. Additionally, we highlight key considerations for future clinical note-generation tasks, emphasizing the importance of pre-defining a best-practice note format, rather than relying on LLMs to determine this for clinical practice. We have made our newly created synthetic clinic dialogue-note dataset and the physician feedback dataset publicly available to foster future research.
- Abstract(参考訳): GPT-4やGeminiのようなプロプライエタリな大規模言語モデル(LLM)は、臨床テキスト要約タスクにおいて有望な能力を示している。
しかしながら、患者のデータのプライバシに関する懸念と計算コストのため、多くの医療提供者は、外部ジェネリックLLMよりも、小さなローカルホストモデルを使うことを好む。
本研究は、オープンソースのLLaMA-213億パラメーターモデルに対する包括的ドメインおよびタスク固有の適応プロセスを示し、外来患者と医師の対話から高品質な臨床ノートを生成する。
私たちのプロセスには、継続的な事前トレーニング、教師付き微調整、AIと人間のフィードバックからの強化学習が含まれています。
我々は、教師モデルとしてGemini 1.0 Proを用いて、政治強化学習を行うための新しいアプローチであるDistillDirectを導入した。
得られたLLaMA-Clinicは,医師が作成したものと同等の精度で臨床記録を作成できる。
盲目医学読者の研究では、個々の評価の90.4%がLLaMA-Clinicが生み出したノートを「許容可能」以上の3つの基準(現実の読みやすさ、完全性、正確性)で評価している。
より挑戦的な「評価と計画」のセクションでは、LLaMA-クリニックは医師が発行したノート(4.1/5)よりも現実の即応性が高い(4.2/5)。
我々のLLaMA-Clinicモデルでは,外部ジェネリックLLMサービスに比べて4.375倍のコスト削減を実現している。
さらに, 臨床実践において, LLM に頼らず, ベストプラクティスのノートフォーマットを事前に定義することの重要性を強調し, 今後の臨床ノート生成課題の重要点を強調した。
我々は,新たに作成した総合診療録データセットと医師のフィードバックデータセットを公開し,今後の研究を奨励した。
関連論文リスト
- SoftTiger: A Clinical Foundation Model for Healthcare Workflows [5.181665205189493]
医療基盤モデルとして設計された臨床用大規模言語モデル(CLaM)であるSoftTigerを紹介する。
我々は,3つのサブタスク,すなわち国際患者要約,臨床印象,医療的出会いのデータを収集し,注釈する。
公立および認証臨床データを用いて,最先端のLCMの微調整を指導した。
論文 参考訳(メタデータ) (2024-03-01T04:39:16Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Distilling Large Language Models for Matching Patients to Clinical
Trials [3.4068841624198942]
近年の大規模言語モデル(LLMs)の成功は、医療分野における彼らの採用の道を開いた。
本研究は,患者と臨床の整合性に対するプロプライエタリ (GPT-3.5, GPT-4) とオープンソース LLM (LLAMA 7B, 13B, 70B) の併用性について,最初の系統的検討を行った。
この制限された合成データセットを微調整したオープンソースのLLMは、プロプライエタリなデータセットと同等の性能を示した。
論文 参考訳(メタデータ) (2023-12-15T17:11:07Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - Do We Still Need Clinical Language Models? [15.023633270864675]
比較的小さな専門的な臨床モデルでは、コンテキスト内学習のアプローチが大幅に優れていることを示す。
physioNet Credentialed Health Dataライセンスとデータ使用契約の下で使用されるコードとモデルをリリースします。
論文 参考訳(メタデータ) (2023-02-16T05:08:34Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
大規模言語モデル(LLM)は、自然言語の理解と生成において印象的な能力を示している。
本稿では, 現実性, 正確性, 潜在的害, バイアスを含む複数の軸に沿ったモデル回答の人為的評価のための枠組みを提案する。
本研究は,モデル尺度とインストラクション・インシデント・チューニングにより,理解,知識の想起,医学的推論が向上することを示す。
論文 参考訳(メタデータ) (2022-12-26T14:28:24Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Human Evaluation and Correlation with Automatic Metrics in Consultation
Note Generation [56.25869366777579]
近年,機械学習モデルによる臨床相談ノートの作成が急速に進んでいる。
5人の臨床医が57件のモック・コンサルテーションを聴き、自作のノートを書き、自動的に生成されたノートを編集し、全てのエラーを抽出する、広範囲にわたる人的評価研究を行った。
単純な文字ベースのLevenshtein距離測定は、BertScoreのような一般的なモデルベースの測定値に比較して、同等に動作します。
論文 参考訳(メタデータ) (2022-04-01T14:04:16Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。