論文の概要: EEG_RL-Net: Enhancing EEG MI Classification through Reinforcement Learning-Optimised Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2405.00723v1
- Date: Fri, 26 Apr 2024 13:09:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 21:02:11.723583
- Title: EEG_RL-Net: Enhancing EEG MI Classification through Reinforcement Learning-Optimised Graph Neural Networks
- Title(参考訳): EEG_RL-Net:強化学習最適化グラフニューラルネットワークによるEEG MI分類の強化
- Authors: Htoo Wai Aung, Jiao Jiao Li, Yang An, Steven W. Su,
- Abstract要約: 本稿では、EEG_GLT-NetからトレーニングされたEEG GCNブロックを隣接行列密度13.39%で組み込んだEEG_GLT-Netフレームワークの強化であるEEG_RL-Netを提案する。
EEG_RL-Netモデルは例外的な分類性能を示し、25ミリ秒以内の20人の被験者の平均精度は96.40%である。
- 参考スコア(独自算出の注目度): 7.9035081192335115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-Computer Interfaces (BCIs) rely on accurately decoding electroencephalography (EEG) motor imagery (MI) signals for effective device control. Graph Neural Networks (GNNs) outperform Convolutional Neural Networks (CNNs) in this regard, by leveraging the spatial relationships between EEG electrodes through adjacency matrices. The EEG_GLT-Net framework, featuring the state-of-the-art EEG_GLT adjacency matrix method, has notably enhanced EEG MI signal classification, evidenced by an average accuracy of 83.95% across 20 subjects on the PhysioNet dataset. This significantly exceeds the 76.10% accuracy rate achieved using the Pearson Correlation Coefficient (PCC) method within the same framework. In this research, we advance the field by applying a Reinforcement Learning (RL) approach to the classification of EEG MI signals. Our innovative method empowers the RL agent, enabling not only the classification of EEG MI data points with higher accuracy, but effective identification of EEG MI data points that are less distinct. We present the EEG_RL-Net, an enhancement of the EEG_GLT-Net framework, which incorporates the trained EEG GCN Block from EEG_GLT-Net at an adjacency matrix density of 13.39% alongside the RL-centric Dueling Deep Q Network (Dueling DQN) block. The EEG_RL-Net model showcases exceptional classification performance, achieving an unprecedented average accuracy of 96.40% across 20 subjects within 25 milliseconds. This model illustrates the transformative effect of the RL in EEG MI time point classification.
- Abstract(参考訳): Brain-Computer Interfaces (BCIs) は、脳波(EEG)運動画像(MI)信号を正確に復号してデバイス制御を行う。
この点において、グラフニューラルネットワーク(GNN)は、隣接行列を介してEEG電極間の空間的関係を活用することにより、畳み込みニューラルネットワーク(CNN)より優れている。
EEG_GLT-Netフレームワークは最先端のEEG_GLT隣接行列法を特徴とし、20人の被験者の平均精度83.95%で証明されたEEG MI信号分類を顕著に強化している。
これはピアソン相関係数(PCC)法で達成した76.10%の精度をはるかに上回る。
本研究では、脳波MI信号の分類に強化学習(Reinforcement Learning, RL)アプローチを適用することにより、分野を前進させる。
脳波MIデータポイントを精度良く分類できるだけでなく、より区別の少ない脳波MIデータポイントを効果的に識別できる。
本稿では、EEG_GLT-NetからトレーニングされたEEG GCNブロックをRL中心のDQNブロックと共に13.39%の隣接行列密度で組み込んだEEG_GLT-Netフレームワークの強化であるEEG_RL-Netを提案する。
EEG_RL-Netモデルは例外的な分類性能を示し、25ミリ秒以内の20人の被験者の平均精度は96.40%である。
このモデルは、EEG MI時間点分類におけるRLの変換効果を示す。
関連論文リスト
- EEG_GLT-Net: Optimising EEG Graphs for Real-time Motor Imagery Signals Classification [7.9035081192335115]
グラフニューラルネットワーク(GCN)は、脳波運動画像信号の分類にますます応用されている。
Pearson Coefficient correlation (PCC) を用いたリアルタイム脳波MI信号分類の最近の進歩
本稿では,EEGチャネルの隣接行列を構成する革新的な手法であるEEG_GLT(EEG Graph Lottery Ticket)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-17T05:16:12Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
入力ECG信号はまずセグメント化され、正規化され、その後、特徴抽出と分類のためにVGGとLSTMネットワークに入力される。
注目機構(SEブロック)をコアネットワークに組み込んで重要な特徴の重み付けを行う。
論文 参考訳(メタデータ) (2022-10-31T07:36:48Z) - EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph
Connectivity [1.1498015270151059]
我々は、畳み込みニューラルネットワーク(CNN)とグラフ畳み込みニューラルネットワーク(GCNN)を統合するハイブリッドネットワークであるEEG-BBNetを提案する。
我々のモデルは、イベント関連電位(ERP)タスクにおけるすべてのベースラインを、セッション内データを用いて平均99.26%の正確な認識率で上回ります。
論文 参考訳(メタデータ) (2022-08-17T10:18:22Z) - Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor
Imagery Classification [14.95694356964053]
対称正定値(SPD)上での脳波信号を特徴付ける幾何学的深層学習フレームワークCSPNetを提案する。
CSPNetは、2つのMI-EEGデータセットのクロスバリデーションとホールドアウトシナリオにおいて、現在の最先端のパフォーマンスを達成またはわずかに上回る。
論文 参考訳(メタデータ) (2022-02-05T02:52:23Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークを提案し,生の脳波信号の復号性能を向上させる。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
論文 参考訳(メタデータ) (2020-06-16T04:57:12Z) - EEG-TCNet: An Accurate Temporal Convolutional Network for Embedded
Motor-Imagery Brain-Machine Interfaces [15.07343602952606]
本稿では、トレーニング可能なパラメータをほとんど必要とせず、優れた精度を実現する新しい時間畳み込みネットワーク(TCN)であるEEG-TCNetを提案する。
メモリフットプリントが低く、推論の計算量も少ないため、エッジのリソース制限されたデバイスの組み込み分類に適している。
論文 参考訳(メタデータ) (2020-05-31T21:45:45Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。