論文の概要: Baseline Drift Tolerant Signal Encoding for ECG Classification with Deep Learning
- arxiv url: http://arxiv.org/abs/2405.00724v1
- Date: Fri, 26 Apr 2024 15:46:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 21:02:11.720986
- Title: Baseline Drift Tolerant Signal Encoding for ECG Classification with Deep Learning
- Title(参考訳): ディープラーニングを用いたECG分類のためのベースラインドリフト耐性信号符号化
- Authors: Robert O Shea, Prabodh Katti, Bipin Rajendran,
- Abstract要約: 本研究は,信号1次および2次時間微分のゼロ交叉に対応する符号付きスパイクを生成する非パラメトリック法である導出ピーク符号化(DP)を提案する。
DPエンコーディングは、アーチファクトのシフトやスケーリングには不変であり、ユーザ定義パラメータの欠如により、その実装はさらに単純化されている。
- 参考スコア(独自算出の注目度): 0.9012198585960443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Common artefacts such as baseline drift, rescaling, and noise critically limit the performance of machine learningbased automated ECG analysis and interpretation. This study proposes Derived Peak (DP) encoding, a non-parametric method that generates signed spikes corresponding to zero crossings of the signals first and second-order time derivatives. Notably, DP encoding is invariant to shift and scaling artefacts, and its implementation is further simplified by the absence of userdefined parameters. DP encoding was used to encode the 12-lead ECG data from the PTB-XL dataset (n=18,869 participants) and was fed to 1D-ResNet-18 models trained to identify myocardial infarction, conductive deficits and ST-segment abnormalities. Robustness to artefacts was assessed by corrupting ECG data with sinusoidal baseline drift, shift, rescaling and noise, before encoding. The addition of these artefacts resulted in a significant drop in accuracy for seven other methods from prior art, while DP encoding maintained a baseline AUC of 0.88 under drift, shift and rescaling. DP achieved superior performance to unencoded inputs in the presence of shift (AUC under 1mV shift: 0.91 vs 0.62), and rescaling artefacts (AUC 0.91 vs 0.79). Thus, DP encoding is a simple method by which robustness to common ECG artefacts may be improved for automated ECG analysis and interpretation.
- Abstract(参考訳): ベースラインドリフト、再スケーリング、ノイズなどの一般的な成果物は、機械学習ベースの自動ECG分析と解釈のパフォーマンスを著しく制限する。
本研究は,信号1次および2次時間微分のゼロ交叉に対応する符号付きスパイクを生成する非パラメトリック法である導出ピーク符号化(DP)を提案する。
特に、DPエンコーディングは、アーチファクトのシフトやスケーリングには不変であり、その実装は、ユーザ定義パラメータの欠如によりさらに単純化されている。
DPエンコーディングは、TB-XLデータセット(n=18,869人)から12個の心電図データを符号化し、心筋梗塞、伝導障害、ST-segment異常を識別するために訓練された1D-ResNet-18モデルに供給された。
符号化前に正弦波ベースラインドリフト,シフト,再スケーリング,ノイズで心電図データを劣化させることにより,人工物へのロバストさを評価した。
これらのアーティファクトを追加することで、先行技術から他の7つの方法の精度が大幅に低下し、DPエンコーディングはドリフト、シフト、再スケーリングの下で0.88のベースラインAUCを維持した。
DPはシフト(AUCは1mVシフト0.91対0.62)と再スケーリングアーティファクト(AUC 0.91対0.79)の存在下での未符号化インプットよりも優れた性能を達成した。
したがって、DP符号化は、一般的なECGアーチファクトに対するロバスト性を、自動ECG分析と解釈のために改善する簡単な方法である。
関連論文リスト
- ECGrecover: a Deep Learning Approach for Electrocardiogram Signal Completion [1.727597257312416]
完全12誘導ECG信号を不完全部分から再構成するという課題に対処する。
再建問題に対処するために,新しい目的関数を訓練したU-Netアーキテクチャを用いたモデルを提案する。
論文 参考訳(メタデータ) (2024-05-31T15:17:12Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) を使用して、差分プライバシ(DP)がモデルパフォーマンス劣化の犠牲となることを保証する。
DPSGD-GCに代わる新しいエラーフィードバック(EF)DPアルゴリズムを提案する。
提案アルゴリズムに対するアルゴリズム固有のDP解析を確立し,R'enyi DPに基づくプライバシ保証を提供する。
論文 参考訳(メタデータ) (2023-11-24T17:56:44Z) - Masked Transformer for Electrocardiogram Classification [7.229662895786343]
MTECG(Masked Transformer for ECG classification)は、ECG分類における最新の最先端アルゴリズムを著しく上回る、単純かつ効果的な手法である。
220,251個の心電図記録と広範囲の診断を行い,医療専門家が注釈を付した不破井データセットを構築した。
論文 参考訳(メタデータ) (2023-08-31T09:21:23Z) - DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and
Noise Removal [4.998493052085877]
心電図(ECG)信号は、ベースラインダウトなど、一般的にノイズ干渉に悩まされる。
本稿では,新しいECGベースラインホアリングとノイズ除去技術を提案する。
論文 参考訳(メタデータ) (2022-07-31T23:39:33Z) - Mitigating the Mutual Error Amplification for Semi-Supervised Object
Detection [92.52505195585925]
擬似ラベルの修正機構を導入し,相互誤りの増幅を緩和するクロス・インストラクション(CT)手法を提案する。
他の検出器からの予測を直接擬似ラベルとして扱う既存の相互指導法とは対照的に,我々はラベル修正モジュール(LRM)を提案する。
論文 参考訳(メタデータ) (2022-01-26T03:34:57Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Robustness of convolutional neural networks to physiological ECG noise [0.0]
心電図(ECG)は、医療において最も普及している診断ツールの一つであり、心血管疾患の診断を支援する。
深層学習法は、心電図信号から障害の徴候を検出する手法として成功し、普及している。
生理的ECGノイズを含む様々な要因に対するこれらの手法の堅牢性には、オープンな疑問がある。
我々は、SPAR(Symmetric Projection Attractor Reconstruction)と頭蓋骨画像変換を適用する前に、ECGデータセットのクリーンでノイズの多いバージョンを生成する。
事前訓練された畳み込みニューラルネットワークは、これらの画像変換を分類するために転送学習を用いて訓練される。
論文 参考訳(メタデータ) (2021-08-02T08:16:32Z) - Heart Sound Classification Considering Additive Noise and Convolutional
Distortion [2.63046959939306]
異常検出のための心臓音の自動解析は、加算雑音とセンサ依存劣化の課題に直面している。
本研究の目的は, 心音に両種類の歪みが存在する場合に, 心的異常検出問題に対処する手法を開発することである。
提案手法は, 安価な聴診器を用いて, ノイズの多い環境下で, コンピュータ支援型心臓聴診システムを開発するための道を開くものである。
論文 参考訳(メタデータ) (2021-06-03T14:09:04Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。