論文の概要: Soft Preference Optimization: Aligning Language Models to Expert Distributions
- arxiv url: http://arxiv.org/abs/2405.00747v2
- Date: Thu, 23 May 2024 20:32:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 20:17:43.151350
- Title: Soft Preference Optimization: Aligning Language Models to Expert Distributions
- Title(参考訳): ソフトな選好最適化: 言語モデルをエキスパート分布に適応させる
- Authors: Arsalan Sharifnassab, Sina Ghiassian, Saber Salehkaleybar, Surya Kanoria, Dale Schuurmans,
- Abstract要約: SPOは、Large Language Models (LLMs)のような生成モデルと人間の好みを整合させる手法である。
SPOは、選好損失をモデル全体の出力分布全体にわたる正規化項と統合する。
本稿では,SPOの方法論,理論的基礎,および単純さ,計算効率,アライメント精度における比較優位性について紹介する。
- 参考スコア(独自算出の注目度): 40.84391304598521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Soft Preference Optimization (SPO), a method for aligning generative models, such as Large Language Models (LLMs), with human preferences, without the need for a reward model. SPO optimizes model outputs directly over a preference dataset through a natural loss function that integrates preference loss with a regularization term across the model's entire output distribution rather than limiting it to the preference dataset. Although SPO does not require the assumption of an existing underlying reward model, we demonstrate that, under the Bradley-Terry (BT) model assumption, it converges to a softmax of scaled rewards, with the distribution's "softness" adjustable via the softmax exponent, an algorithm parameter. We showcase SPO's methodology, its theoretical foundation, and its comparative advantages in simplicity, computational efficiency, and alignment precision.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) などの生成モデルと人間の好みを協調する手法であるSoft Preference Optimization (SPO) を提案する。
SPOは、選好データセットに制限するのではなく、モデル全体の出力分布をまたいだ正規化項に選好損失を統合する自然損失関数を通じて、選好データセット上でのモデル出力を直接最適化する。
SPO は既存の報酬モデルの仮定を必要としないが,Bradley-Terry (BT) モデルでは,アルゴリズムパラメータである Softmax Exponent を通じて分布の「ソフトネス」を調整可能なスケールされた報酬のソフトマックスに収束することを示した。
本稿では,SPOの方法論,理論的基礎,および単純さ,計算効率,アライメント精度における比較優位性について紹介する。
関連論文リスト
- Step-level Value Preference Optimization for Mathematical Reasoning [6.318873143509028]
SVPO(Step-level Value Preference Optimization)と呼ばれる新しいアルゴリズムを導入する。
提案手法ではモンテカルロ木探索(MCTS)を用いて,マルチステップ推論のためのステップレベルの選好を自動的にアノテートする。
学習からランクまでの観点から、暗黙の報酬モデルの振る舞いを再現するために明示的な価値モデルを訓練する。
論文 参考訳(メタデータ) (2024-06-16T09:06:17Z) - Robust Preference Optimization through Reward Model Distillation [68.65844394615702]
言語モデル (LM) は、好みのアノテーションから派生した報酬関数を最大化する。
DPOは、報酬モデルや強化学習を適用することなく、優先データに直接ポリシーを訓練する一般的なオフラインアライメント手法である。
この現象を解析し, 生成対よりも真の嗜好分布のより良いプロキシを得るため, 蒸留を提案する。
論文 参考訳(メタデータ) (2024-05-29T17:39:48Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Maximum Entropy Model Rollouts: Fast Model Based Policy Optimization
without Compounding Errors [10.906666680425754]
我々は、最大エントロピーモデルロールアウト(MEMR)と呼ばれるダイナスタイルモデルに基づく強化学習アルゴリズムを提案する。
複雑なエラーをなくすために、我々はモデルを使って単一ステップのロールアウトを生成する。
論文 参考訳(メタデータ) (2020-06-08T21:38:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。