論文の概要: Uncovering Agendas: A Novel French & English Dataset for Agenda Detection on Social Media
- arxiv url: http://arxiv.org/abs/2405.00821v1
- Date: Wed, 1 May 2024 19:02:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 20:32:52.683870
- Title: Uncovering Agendas: A Novel French & English Dataset for Agenda Detection on Social Media
- Title(参考訳): Agendas: ソーシャルメディア上でのAgenda検出のためのフランス語と英語の新しいデータセット
- Authors: Gregorios Katsios, Ning Sa, Ankita Bhaumik, Tomek Strzalkowski,
- Abstract要約: 本稿では,注釈付きデータが限定的あるいは存在しないソーシャルメディアを通じて,アジェンダ制御の特定の事例を検出する手法を提案する。
タスクをテキストエンテーメント問題として扱うことにより、大規模な注釈付きトレーニングデータセットの要件を克服することが可能となる。
- 参考スコア(独自算出の注目度): 1.4999444543328293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The behavior and decision making of groups or communities can be dramatically influenced by individuals pushing particular agendas, e.g., to promote or disparage a person or an activity, to call for action, etc.. In the examination of online influence campaigns, particularly those related to important political and social events, scholars often concentrate on identifying the sources responsible for setting and controlling the agenda (e.g., public media). In this article we present a methodology for detecting specific instances of agenda control through social media where annotated data is limited or non-existent. By using a modest corpus of Twitter messages centered on the 2022 French Presidential Elections, we carry out a comprehensive evaluation of various approaches and techniques that can be applied to this problem. Our findings demonstrate that by treating the task as a textual entailment problem, it is possible to overcome the requirement for a large annotated training dataset.
- Abstract(参考訳): グループやコミュニティの行動や意思決定は、特定の議題、例えば、個人や活動の促進や分離、行動の呼びかけなどを推進する個人によって、劇的に影響を受けます。
オンライン・インフルエンス・キャンペーン(特に重要な政治的・社会的な出来事に関連するもの)の審査において、学者はしばしばアジェンダの設定と制御(例えば、メディア)に責任のある情報源を特定することに集中する。
本稿では,アノテーション付きデータが限定的あるいは存在しないソーシャルメディアを通じて,アジェンダ制御の特定の事例を検出する手法を提案する。
2022年のフランス大統領選挙を中心にしたTwitterメッセージの質素なコーパスを用いて、この問題に適用可能な様々なアプローチやテクニックを包括的に評価する。
この結果から,タスクをテキストエンテインメント問題として扱うことで,大規模な注釈付きトレーニングデータセットの要件を克服できることが示唆された。
関連論文リスト
- Labeled Datasets for Research on Information Operations [71.34999856621306]
ソーシャルメディアプラットフォームによって検証されたIOポストと、同様のトピックを同じ時間フレーム(制御データ)で議論した303kアカウントによる1300万以上の投稿の両方を含む、26のキャンペーンに関するラベル付きデータセットを新たに提示する。
データセットは、さまざまなキャンペーンや国で調整されたアカウントによって使用される物語、ネットワークインタラクション、エンゲージメント戦略の研究を促進する。
論文 参考訳(メタデータ) (2024-11-15T22:15:01Z) - On the Use of Proxies in Political Ad Targeting [49.61009579554272]
我々は、主要な政治広告主がプロキシ属性をターゲットとして緩和を回避したことを示す。
本研究は政治広告の規制に関する議論に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-10-18T17:15:13Z) - A Survey of Stance Detection on Social Media: New Directions and Perspectives [50.27382951812502]
姿勢検出は 感情コンピューティングにおける 重要なサブフィールドとして現れました
近年は、効果的な姿勢検出手法の開発に対する研究の関心が高まっている。
本稿では,ソーシャルメディア上での姿勢検出手法に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-09-24T03:06:25Z) - Uncovering Latent Arguments in Social Media Messaging by Employing LLMs-in-the-Loop Strategy [22.976609127865732]
ソーシャルメディアは世論分析の自動化方法として人気が高まっている。
トピックモデリングのような公共の話題からテーマを抽出する伝統的な教師なしの手法は、しばしば特定のニュアンスを捉えない過度なパターンを明らかにする。
本稿では,大規模言語モデルの高度な機能を活用したLLMs-in-the-Loop戦略を提案する。
論文 参考訳(メタデータ) (2024-04-16T03:26:43Z) - Time Series Analysis of Key Societal Events as Reflected in Complex
Social Media Data Streams [0.9790236766474201]
本研究では,ニッチなソーシャルメディアプラットフォームであるGABと,確立されたメッセージングサービスであるTelegramの物語進化について検討する。
我々のアプローチは、複数のソーシャルメディアドメインを調査し、他の方法では見えない重要な情報を排除するための新しいモードである。
主な知見は,(1) 時間線をデコンストラクトして, 解釈を改善するための有用なデータ機能を提供すること,(2) 一般化の基盤を提供する方法論を適用すること,である。
論文 参考訳(メタデータ) (2024-03-11T18:33:56Z) - Social Convos: Capturing Agendas and Emotions on Social Media [1.6385815610837167]
本稿では,特定のトピックを議論するユーザのグループ間を循環するメッセージから,影響指標を抽出する手法を提案する。
我々は、アジェンダ(制御)と感情言語の使用の2つの影響指標に焦点を当てる。
論文 参考訳(メタデータ) (2024-02-23T19:14:09Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
オンラインソーシャルメディア上で政治的分極を特徴付ける機械学習モデルを開発することは、大きな課題である。
これらの課題は主に、注釈付きデータの欠如、ソーシャルメディアデータセットにおけるノイズの存在、膨大な量のデータなど、さまざまな要因に起因している。
本稿では、ソーシャルメディア投稿のラベル付けに、メディアバイアスと投稿コンテンツを活用する2つの方法を紹介する。
ソーシャルメディア投稿の政治的指向を予測することで,現在の機械学習モデルの性能向上を実証する。
論文 参考訳(メタデータ) (2023-11-21T03:34:20Z) - Leveraging Large Language Models to Detect Influence Campaigns in Social
Media [9.58546889761175]
ソーシャルメディアの影響は、大衆の言論や民主主義に重大な課題をもたらしている。
従来の検出方法は、ソーシャルメディアの複雑さとダイナミックな性質のために不足している。
本稿では,ユーザメタデータとネットワーク構造の両方を組み込んだLarge Language Models (LLM) を用いた新しい検出手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T00:25:09Z) - Understanding Divergent Framing of the Supreme Court Controversies:
Social Media vs. News Outlets [56.67097829383139]
我々は、米国最高裁判所の一連の判決に関して、ソーシャルメディアや伝統的なメディアのフレーミングにおける微妙な区別に焦点を当てている。
メディアが肯定的な行動や中絶の権利を扱い、学生ローンの話題はより深いコンセンサスを示す傾向にある。
論文 参考訳(メタデータ) (2023-09-18T06:40:21Z) - Leveraging Large Language Models for Topic Classification in the Domain
of Public Affairs [65.9077733300329]
大規模言語モデル (LLM) は公務員文書の分析を大幅に強化する可能性を秘めている。
LLMは、公共の分野など、ドメイン固有のドキュメントを処理するのに非常に役立ちます。
論文 参考訳(メタデータ) (2023-06-05T13:35:01Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。