論文の概要: SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters
- arxiv url: http://arxiv.org/abs/2405.00946v1
- Date: Thu, 2 May 2024 02:15:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 18:14:01.351959
- Title: SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters
- Title(参考訳): SparseTSF: 1kパラメータによる長期時系列予測のモデル化
- Authors: Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, Junjie Yang,
- Abstract要約: 本稿では,長期時系列予測(LTSF)のための新しい,極めて軽量なモデルであるSparseTSFを紹介する。
SparseTSFの中心にはCross-Period Sparse Forecasting技術があり、時系列データの周期性と傾向を分離することで予測タスクを単純化する。
SparseTSFは目覚ましい一般化機能を示しており、限られた計算資源、小さなサンプル、低品質のデータを扱うシナリオに適している。
- 参考スコア(独自算出の注目度): 16.966008476215258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces SparseTSF, a novel, extremely lightweight model for Long-term Time Series Forecasting (LTSF), designed to address the challenges of modeling complex temporal dependencies over extended horizons with minimal computational resources. At the heart of SparseTSF lies the Cross-Period Sparse Forecasting technique, which simplifies the forecasting task by decoupling the periodicity and trend in time series data. This technique involves downsampling the original sequences to focus on cross-period trend prediction, effectively extracting periodic features while minimizing the model's complexity and parameter count. Based on this technique, the SparseTSF model uses fewer than 1k parameters to achieve competitive or superior performance compared to state-of-the-art models. Furthermore, SparseTSF showcases remarkable generalization capabilities, making it well-suited for scenarios with limited computational resources, small samples, or low-quality data. The code is available at: https://github.com/lss-1138/SparseTSF.
- Abstract(参考訳): 本稿では,SparseTSFについて紹介する。SparseTSFは,最小限の計算資源を持つ拡張地平線上での複雑な時間的依存関係をモデル化する際の課題を解決するために設計された,長期時系列予測(LTSF)のための新しい,非常に軽量なモデルである。
SparseTSFの中心にはCross-Period Sparse Forecasting技術があり、時系列データの周期性と傾向を分離することで予測タスクを単純化する。
この手法は、モデルの複雑さとパラメータ数を最小限に抑えながら、周期的な特徴を効果的に抽出する。
この技術に基づいて、SparseTSFモデルは1k未満のパラメータを使用して、最先端モデルと比較して、競争力や優れた性能を達成する。
さらに、SparseTSFは目覚ましい一般化機能を示し、限られた計算資源、小さなサンプル、低品質のデータを扱うシナリオに適している。
コードは、https://github.com/lss-1138/SparseTSFで入手できる。
関連論文リスト
- Sundial: A Family of Highly Capable Time Series Foundation Models [64.6322079384575]
Sundialはネイティブでフレキシブルでスケーラブルな時系列基盤モデルのファミリーです。
本モデルでは,事前分布を指定せずに事前学習を行い,複数の予測予測を生成できる。
TimeFlow Loss を通じてモード崩壊を緩和することにより、TimeBench 上で Sundial モデルのファミリーを事前訓練し、前例のないモデルキャパシティと一般化性能を示す。
論文 参考訳(メタデータ) (2025-02-02T14:52:50Z) - The Tabular Foundation Model TabPFN Outperforms Specialized Time Series Forecasting Models Based on Simple Features [40.19199376033612]
本稿では,TabPFNと単純な特徴工学を組み合わせ,予測性能を高めるための簡単なアプローチであるTabPFN-TSを提案する。
その単純さとわずか1100万のパラメータにもかかわらず、TabPFN-TSは類似サイズのモデルであるChronos-Miniよりも優れており、65倍のパラメータを持つChronos-Largeよりもわずかに優れている。
論文 参考訳(メタデータ) (2025-01-06T11:38:19Z) - How Much Can Time-related Features Enhance Time Series Forecasting? [27.030553080458716]
時間関連機能であるTime Stamp Forecaster (TimeSter) をエンコードするモジュールを導入する。
TimeSterは単一の線形プロジェクタの性能を大幅に改善し、ElectricityやTrafficなどのベンチマークデータセットで平均23%MSEを削減している。
論文 参考訳(メタデータ) (2024-12-02T14:45:26Z) - MixLinear: Extreme Low Resource Multivariate Time Series Forecasting with 0.1K Parameters [6.733646592789575]
時系列予測(LTSF)は、パターンや傾向を特定するために、大量の時系列データを分析することによって、長期的な価値を予測する。
トランスフォーマーベースのモデルは高い予測精度を提供するが、ハードウェア制約のあるデバイスにデプロイするには計算集約的すぎることが多い。
資源制約のあるデバイスに特化して設計された超軽量時系列予測モデルであるMixLinearを提案する。
論文 参考訳(メタデータ) (2024-10-02T23:04:57Z) - CycleNet: Enhancing Time Series Forecasting through Modeling Periodic Patterns [6.296866390553982]
本稿では、学習可能な繰り返しサイクルを用いてシーケンス内の固有周期パターンをモデル化するResidual Cycle Forecasting(RCF)手法を提案する。
CycleNetは、電気、天気、エネルギーを含む複数の領域で最先端の予測精度を達成し、高い効率性を提供する。
新しいプラグアンドプレイ技術として、RCFはPatchTSTやiTransformerといった既存のモデルの予測精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-09-27T06:42:22Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
MTSFのためのクロスモーダルLCMファインチューニング(CALF)フレームワークを提案する。
分散の相違を低減するため,クロスモーダルマッチングモジュールを開発した。
CALFは、長期および短期の予測タスクの最先端のパフォーマンスを確立する。
論文 参考訳(メタデータ) (2024-03-12T04:04:38Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models [52.454274602380124]
拡散モデルは非常に時間ステップ$t$に大きく依存し、良好なマルチラウンドデノジングを実現している。
本稿では,時間情報ブロック上に構築した時間的特徴保守量子化(TFMQ)フレームワークを提案する。
先駆的なブロック設計により、時間情報認識再構成(TIAR)と有限集合キャリブレーション(FSC)を考案し、完全な時間的特徴を整列させる。
論文 参考訳(メタデータ) (2023-11-27T12:59:52Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Pattern-based Long Short-term Memory for Mid-term Electrical Load
Forecasting [0.0]
本研究は,1年間の地平線で月次電力需要時系列を予測するためのネットワークを提示する。
この研究の新規性は、分解の代替として季節時系列のパターン表現を使用することである。
欧州35か国における月次電力需要時系列のシミュレーション研究により,提案モデルの高性能性が確認された。
論文 参考訳(メタデータ) (2020-04-22T08:39:32Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。