論文の概要: Network reconstruction via the minimum description length principle
- arxiv url: http://arxiv.org/abs/2405.01015v1
- Date: Thu, 2 May 2024 05:35:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:43:16.635472
- Title: Network reconstruction via the minimum description length principle
- Title(参考訳): 最小記述長原理によるネットワーク再構築
- Authors: Tiago P. Peixoto,
- Abstract要約: 階層的ベイズ推定と重み量子化に基づく別の非パラメトリック正則化スキームを提案する。
提案手法は最小記述長 (MDL) の原理に従い, データの最大圧縮を可能にする重み分布を明らかにする。
提案手法は, 人工ネットワークと経験ネットワークの再構築において, 体系的に精度が向上することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A fundamental problem associated with the task of network reconstruction from dynamical or behavioral data consists in determining the most appropriate model complexity in a manner that prevents overfitting, and produces an inferred network with a statistically justifiable number of edges. The status quo in this context is based on $L_{1}$ regularization combined with cross-validation. As we demonstrate, besides its high computational cost, this commonplace approach unnecessarily ties the promotion of sparsity with weight "shrinkage". This combination forces a trade-off between the bias introduced by shrinkage and the network sparsity, which often results in substantial overfitting even after cross-validation. In this work, we propose an alternative nonparametric regularization scheme based on hierarchical Bayesian inference and weight quantization, which does not rely on weight shrinkage to promote sparsity. Our approach follows the minimum description length (MDL) principle, and uncovers the weight distribution that allows for the most compression of the data, thus avoiding overfitting without requiring cross-validation. The latter property renders our approach substantially faster to employ, as it requires a single fit to the complete data. As a result, we have a principled and efficient inference scheme that can be used with a large variety of generative models, without requiring the number of edges to be known in advance. We also demonstrate that our scheme yields systematically increased accuracy in the reconstruction of both artificial and empirical networks. We highlight the use of our method with the reconstruction of interaction networks between microbial communities from large-scale abundance samples involving in the order of $10^{4}$ to $10^{5}$ species, and demonstrate how the inferred model can be used to predict the outcome of interventions in the system.
- Abstract(参考訳): 動的データや行動データからネットワークを再構築する作業に関わる根本的な問題は、過度な適合を防止し、統計的に正当化可能なエッジ数を持つ推論ネットワークを生成する方法で、最も適切なモデル複雑性を決定することである。
この文脈におけるステータスクオは、$L_{1}$正規化とクロスバリデーションの組み合わせに基づいている。
計算コストが高いことに加えて、このコモンプレースアプローチは、スパーシティの促進と重みの「収縮」を不要に結び付ける。
この組み合わせは、縮小によって導入されたバイアスとネットワークの間隔の間のトレードオフを強制し、しばしばクロスバリデーションの後にもかなりの過度なオーバーフィッティングをもたらす。
本研究では,階層的ベイズ推定と重み量子化に基づく別の非パラメトリック正則化スキームを提案する。
提案手法は最小記述長(MDL)の原理に従い,データ圧縮の最大化を可能にする重み分布を明らかにする。
後者のプロパティは、完全なデータに適合する単一のデータを必要とするため、我々のアプローチをかなり高速に採用します。
その結果、先述したエッジの数を必要とせず、多種多様な生成モデルで使用できる原理的かつ効率的な推論スキームが得られた。
また,本手法は,人工ネットワークと経験ネットワークの再構築において,体系的に精度が向上することを示した。
本手法は, 微生物群集間の相互作用ネットワークの再構築と, 10^{4}$から10^{5}$種を含む大規模個体群間の相互作用ネットワークの再構築に有効であることを示すとともに, システム内の介入の結果を予測するために, 推定モデルをどのように利用できるかを示す。
関連論文リスト
- Posterior and variational inference for deep neural networks with heavy-tailed weights [0.0]
我々は、ネットワーク重みをランダムにサンプリングする事前分布を持つベイズフレームワークにおいて、ディープニューラルネットワークを考察する。
後部分布は, ほぼ最適のミニマックス収縮速度を達成できることを示す。
また, 実験結果の変分ベイズ版も提供し, 平均場変分近似は, ほぼ最適理論的支援の恩恵を受けていることを示した。
論文 参考訳(メタデータ) (2024-06-05T15:24:20Z) - Learning a Gaussian Mixture for Sparsity Regularization in Inverse
Problems [2.375943263571389]
逆問題では、スパーシティ事前の組み込みは、解に対する正則化効果をもたらす。
本稿では,ガウスの混合として事前に定式化された確率的疎性について提案する。
我々は、このネットワークのパラメータを推定するために、教師なしのトレーニング戦略と教師なしのトレーニング戦略をそれぞれ導入した。
論文 参考訳(メタデータ) (2024-01-29T22:52:57Z) - Sharper analysis of sparsely activated wide neural networks with
trainable biases [103.85569570164404]
本研究は,ニューラル・タンジェント・カーネル(NTK)の勾配勾配による一層超過パラメータ化ReLUネットワークのトレーニング研究である。
驚くべきことに、スパシフィケーション後のネットワークは、元のネットワークと同じくらい高速に収束できることが示されている。
一般化境界は制限NTKの最小固有値に依存するため、この研究は制限NTKの最小固有値をさらに研究する。
論文 参考訳(メタデータ) (2023-01-01T02:11:39Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
暗黙のニューラルネットワークは、競合性能とメモリ消費の削減を提供する。
入力逆流の摂動に関して、それらは不安定なままである。
本稿では,暗黙的ニューラルネットワークのロバスト性検証のための理論的および計算的枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-10T03:08:55Z) - Kronecker Factorization for Preventing Catastrophic Forgetting in
Large-scale Medical Entity Linking [7.723047334864811]
医療分野では、タスクのシーケンシャルなトレーニングがモデルをトレーニングする唯一の方法である場合もあります。
破滅的な忘れ物、すなわち、新しいタスクのためにモデルが更新されたとき、以前のタスクの精度が大幅に低下します。
本稿では,この手法が3つのデータセットにまたがる医療機関の重要かつ実証的な課題に有効であることを示す。
論文 参考訳(メタデータ) (2021-11-11T01:51:01Z) - Robustness to Pruning Predicts Generalization in Deep Neural Networks [29.660568281957072]
トレーニングの損失に悪影響を与えることなく、pruning中に維持できるネットワークのパラメータの最小の屈折であるprunabilityを紹介します。
この測定は、CIFAR-10で訓練された大規模な畳み込みネットワーク全体のモデル一般化性能を非常に予測できることを示した。
論文 参考訳(メタデータ) (2021-03-10T11:39:14Z) - Stable Recovery of Entangled Weights: Towards Robust Identification of
Deep Neural Networks from Minimal Samples [0.0]
連続した層の重みを、活性化関数とそのシフトに応じて適切な対角行列と反転行列と絡み合ういわゆる絡み合い重みを紹介します。
エンタングル重みは効率的でロバストなアルゴリズムによって完全かつ安定に近似することが証明される。
本研究は,入力出力情報をネットワークパラメータに一意かつ安定的に関連付けることができ,説明可能性の一形態を提供する。
論文 参考訳(メタデータ) (2021-01-18T16:31:19Z) - Mixed-Privacy Forgetting in Deep Networks [114.3840147070712]
大規模画像分類タスクにおいてトレーニングされたネットワークの重みからトレーニングサンプルのサブセットの影響を除去できることを示す。
そこで本研究では,混合プライバシー設定における「忘れ」という新しい概念を導入する。
提案手法は,モデル精度のトレードオフを伴わずに忘れることができることを示す。
論文 参考訳(メタデータ) (2020-12-24T19:34:56Z) - Squared $\ell_2$ Norm as Consistency Loss for Leveraging Augmented Data
to Learn Robust and Invariant Representations [76.85274970052762]
元のサンプルと拡張されたサンプルの埋め込み/表現の距離を規則化することは、ニューラルネットワークの堅牢性を改善するための一般的なテクニックである。
本稿では、これらの様々な正規化選択について検討し、埋め込みの正規化方法の理解を深める。
私たちが特定したジェネリックアプローチ(squared $ell$ regularized augmentation)は、それぞれ1つのタスクのために特別に設計されたいくつかの手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-25T22:40:09Z) - Improve Generalization and Robustness of Neural Networks via Weight
Scale Shifting Invariant Regularizations [52.493315075385325]
重み劣化を含む正則化器の族は、均質な活性化関数を持つネットワークに対する本質的な重みのノルムをペナルティ化するのに有効でないことを示す。
そこで我々は,ニューラルネットワークの本質的な規範を効果的に制約する改良型正規化器を提案する。
論文 参考訳(メタデータ) (2020-08-07T02:55:28Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。