論文の概要: Continuous-variable quantum kernel method on a programmable photonic quantum processor
- arxiv url: http://arxiv.org/abs/2405.01086v1
- Date: Thu, 2 May 2024 08:33:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:23:40.697962
- Title: Continuous-variable quantum kernel method on a programmable photonic quantum processor
- Title(参考訳): プログラマブルフォトニック量子プロセッサにおける連続可変量子カーネル法
- Authors: Keitaro Anai, Shion Ikehara, Yoshichika Yano, Daichi Okuno, Shuntaro Takeda,
- Abstract要約: CV量子カーネル法は,実験上の不完全条件下であっても,複数のデータセットを頑健に分類できることを実験的に証明した。
このデモンストレーションは、QMLのためのCV量子システムの実用性に光を当て、他のCVQMLアルゴリズムにおけるさらなる研究を刺激する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Among various quantum machine learning (QML) algorithms, the quantum kernel method has especially attracted attention due to its compatibility with noisy intermediate-scale quantum devices and its potential to achieve quantum advantage. This method performs classification and regression by nonlinearly mapping data into quantum states in a higher dimensional Hilbert space. Thus far, the quantum kernel method has been implemented only on qubit-based systems, but continuous-variable (CV) systems can potentially offer superior computational power by utilizing its infinite-dimensional Hilbert space. Here, we demonstrate the implementation of the classification task with the CV quantum kernel method on a programmable photonic quantum processor. We experimentally prove that the CV quantum kernel method successfully classifies several datasets robustly even under the experimental imperfections, with high accuracies comparable to the classical kernel. This demonstration sheds light on the utility of CV quantum systems for QML and should stimulate further study in other CV QML algorithms.
- Abstract(参考訳): 様々な量子機械学習(QML)アルゴリズムの中で、量子カーネル法が特に注目されているのは、ノイズの多い中間スケールの量子デバイスとの互換性と、量子優位性を達成する可能性である。
この方法は、高次元ヒルベルト空間において、データを非線形に量子状態にマッピングすることで分類と回帰を行う。
これまでのところ、量子カーネル法は量子ビットベースのシステムでしか実装されていないが、連続可変(CV)システムは無限次元ヒルベルト空間を利用することで優れた計算能力を提供できる可能性がある。
本稿では,プログラマブルフォトニック量子プロセッサ上でのCV量子カーネル法による分類タスクの実装について述べる。
CV量子カーネル法は,実験的不完全条件下であっても,古典的カーネルに匹敵する高い精度で,複数のデータセットを頑健に分類できることを実験的に証明した。
このデモンストレーションは、QMLのためのCV量子システムの実用性に光を当て、他のCVQMLアルゴリズムにおけるさらなる研究を刺激する。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
本稿では,古典計算機における量子化学の柱である結合クラスタ(CC)理論に基づく状態準備法を提案する。
提案手法は,従来の計算オーバーヘッドを低減し,CNOTおよびTゲートの数を平均で28%,57%削減する。
論文 参考訳(メタデータ) (2024-06-17T14:10:10Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Phase-space negativity as a computational resource for quantum kernel methods [2.5499055723658097]
量子カーネル法は、機械学習において量子計算の優位性を達成するための提案である。
ボゾン系に対する量子核関数の最適古典的推定に十分な条件を提供する。
本研究は, 量子機械学習において, 位相空間準確率分布における負性の役割を担っている。
論文 参考訳(メタデータ) (2024-05-20T21:18:53Z) - A Kerr kernel quantum learning machine [0.0]
超伝導量子回路に基づく量子ハードウェアカーネルの実装手法を提案する。
このスキームは量子ビットや量子回路を使用せず、カーモードのアナログ特性を利用する。
論文 参考訳(メタデータ) (2024-04-02T09:50:33Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
一般化誤差が小さい場合でも,量子カーネル法は予測能力に乏しい。
我々は、量子計算にノイズの多い量子カーネル法を用いるために重要な警告を提供する。
論文 参考訳(メタデータ) (2024-01-31T01:02:16Z) - Variational Quantum Kernels with Task-Specific Quantum Metric Learning [0.8722210937404288]
カーネル法は、より高次元(おそらく無限)な特徴空間における点間の類似性の概念に依存している。
最適な量子埋め込みを生成するために,変分量子カーネルとタスク固有量子量子学習について論じる。
論文 参考訳(メタデータ) (2022-11-08T18:36:25Z) - Parameterized Quantum Circuits with Quantum Kernels for Machine
Learning: A Hybrid Quantum-Classical Approach [0.8722210937404288]
Kernel ized Quantum Circuits (PQCs) は一般に量子機械学習(QML)へのハイブリッドアプローチで使用される。
我々は、PQCと量子カーネルの重要な側面として、PQC、量子カーネル、量子アドバンテージを持つ量子カーネル、量子カーネルのトレーニング可能性について論じる。
論文 参考訳(メタデータ) (2022-09-28T22:14:41Z) - Optimal quantum kernels for small data classification [0.0]
本稿では,量子ゲートシーケンスをデータに適応させるベクトルマシンをサポートするために,量子カーネルを構築するアルゴリズムを示す。
少数のトレーニングポイントを持つ分類問題に対する結果の量子モデルの性能は、最適化された古典モデルよりも著しく高い。
論文 参考訳(メタデータ) (2022-03-25T18:26:44Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
決定論的に作成された中性原子の2次元配列に基づくプログラマブル量子シミュレータを実証する。
我々は高忠実度反強磁性状態の生成と特徴付けによりシステムをベンチマークする。
次に、相互作用とコヒーレントレーザー励起の間の相互作用から生じるいくつかの新しい量子相を作成し、研究する。
論文 参考訳(メタデータ) (2020-12-22T19:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。