論文の概要: LLM Security Guard for Code
- arxiv url: http://arxiv.org/abs/2405.01103v1
- Date: Thu, 2 May 2024 09:13:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:13:51.772929
- Title: LLM Security Guard for Code
- Title(参考訳): コードのためのLLMセキュリティガード
- Authors: Arya Kavian, Mohammad Mehdi Pourhashem Kallehbasti, Sajjad Kazemi, Ehsan Firouzi, Mohammad Ghafari,
- Abstract要約: LLMSecGuardは、静的コードアナライザとLarge Language Modelsの相乗効果を通じて、コードセキュリティを強化したオープンソースのフレームワークである。
また、LSMをベンチマークし、これらのモデルの進化するセキュリティ特性に関する貴重な洞察を提供する。
- 参考スコア(独自算出の注目度): 0.0699049312989311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many developers rely on Large Language Models (LLMs) to facilitate software development. Nevertheless, these models have exhibited limited capabilities in the security domain. We introduce LLMSecGuard, an open-source framework that offers enhanced code security through the synergy between static code analyzers and LLMs. LLMSecGuard aims to equip practitioners with code solutions that are more secure than the code initially generated by LLMs. It also benchmarks LLMs, providing valuable insights into the evolving security properties of these models.
- Abstract(参考訳): 多くの開発者は、ソフトウェア開発を容易にするためにLarge Language Models (LLM)に依存している。
それでも、これらのモデルはセキュリティ領域で限られた機能を示している。
LLMSecGuardは、静的コードアナライザとLLM間の相乗効果を通じて、コードセキュリティを強化したオープンソースのフレームワークである。
LLMSecGuardは、LLMが最初に生成したコードよりもセキュアなコードソリューションを実践者に提供することを目的としている。
また、LSMをベンチマークし、これらのモデルの進化するセキュリティ特性に関する貴重な洞察を提供する。
関連論文リスト
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Large Language Model Supply Chain: Open Problems From the Security Perspective [25.320736806895976]
大規模言語モデル(LLM)はソフトウェア開発パラダイムを変えつつあり、学術と産業の両方から大きな注目を集めています。
各コンポーネントの潜在的なセキュリティリスクとLCM SCのコンポーネント間の統合について議論する第一歩を踏み出します。
論文 参考訳(メタデータ) (2024-11-03T15:20:21Z) - CoreGuard: Safeguarding Foundational Capabilities of LLMs Against Model Stealing in Edge Deployment [43.53211005936295]
CoreGuardは、エッジデバイス上でのモデル盗難に対する、計算と通信効率のよいモデル保護アプローチである。
私たちは、CoreGuardがブラックボックスのセキュリティ保証と同じセキュリティ保護を無視可能なオーバーヘッドで達成していることを示します。
論文 参考訳(メタデータ) (2024-10-16T08:14:24Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - Can We Trust Large Language Models Generated Code? A Framework for In-Context Learning, Security Patterns, and Code Evaluations Across Diverse LLMs [2.7138982369416866]
大規模言語モデル(LLM)は、ソフトウェア工学における自動コード生成に革命をもたらした。
しかし、生成されたコードのセキュリティと品質に関する懸念が持ち上がっている。
本研究は,LLMの行動学習をセキュアにするための枠組みを導入することで,これらの課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-06-18T11:29:34Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
大規模言語モデル(LLM)の安全性を高める既存の手法は、LLMエージェントに直接転送することはできない。
我々は、他のLLMエージェントに対するガードレールとして、最初のLLMエージェントであるGuardAgentを提案する。
GuardAgentは、1)提供されたガードリクエストを分析してタスクプランを作成し、2)タスクプランに基づいてガードレールコードを生成し、APIを呼び出すか、または外部エンジンを使用してコードを実行する。
論文 参考訳(メタデータ) (2024-06-13T14:49:26Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - Code Security Vulnerability Repair Using Reinforcement Learning with
Large Language Models [1.5457286059556397]
大規模言語モデル(LLM)から生成されたコードのセキュリティ強化と強化のための強化学習に基づく手法を提案する。
本研究では,コードにセキュリティと機能的対策を加えることに集中する意味的報酬機構と統語的報酬機構を組み合わせることで,プログラム固有の修復を行うための強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-13T10:19:26Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - SALLM: Security Assessment of Generated Code [0.5137309756089941]
本稿では,セキュアなコードを体系的に生成する大規模言語モデルの能力をベンチマークするフレームワークであるSALLMについて述べる。
フレームワークには3つの主要なコンポーネントがある。セキュリティ中心のPythonプロンプトの新たなデータセット、生成されたコードを評価するための評価テクニック、セキュアなコード生成の観点からモデルのパフォーマンスを評価するための新しいメトリクスである。
論文 参考訳(メタデータ) (2023-11-01T22:46:31Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
我々は、最先端のCode LLMとコードインテリジェンスのためのオープンソースのTransformerベースのライブラリであるCodeTFを紹介する。
我々のライブラリは、事前訓練されたコードLLMモデルと人気のあるコードベンチマークのコレクションをサポートします。
CodeTFが機械学習/生成AIとソフトウェア工学のギャップを埋められることを願っている。
論文 参考訳(メタデータ) (2023-05-31T05:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。