論文の概要: CoreGuard: Safeguarding Foundational Capabilities of LLMs Against Model Stealing in Edge Deployment
- arxiv url: http://arxiv.org/abs/2410.13903v1
- Date: Wed, 16 Oct 2024 08:14:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:25:53.575240
- Title: CoreGuard: Safeguarding Foundational Capabilities of LLMs Against Model Stealing in Edge Deployment
- Title(参考訳): CoreGuard: エッジデプロイメントにおけるモデルステアリングに対するLLMの基本機能保護
- Authors: Qinfeng Li, Yangfan Xie, Tianyu Du, Zhiqiang Shen, Zhenghan Qin, Hao Peng, Xinkui Zhao, Xianwei Zhu, Jianwei Yin, Xuhong Zhang,
- Abstract要約: CoreGuardは、エッジデバイス上でのモデル盗難に対する、計算と通信効率のよいモデル保護アプローチである。
私たちは、CoreGuardがブラックボックスのセキュリティ保証と同じセキュリティ保護を無視可能なオーバーヘッドで達成していることを示します。
- 参考スコア(独自算出の注目度): 43.53211005936295
- License:
- Abstract: Proprietary large language models (LLMs) demonstrate exceptional generalization ability across various tasks. Additionally, deploying LLMs on edge devices is trending for efficiency and privacy reasons. However, edge deployment of proprietary LLMs introduces new security threats: attackers who obtain an edge-deployed LLM can easily use it as a base model for various tasks due to its high generalization ability, which we call foundational capability stealing. Unfortunately, existing model protection mechanisms are often task-specific and fail to protect general-purpose LLMs, as they mainly focus on protecting task-related parameters using trusted execution environments (TEEs). Although some recent TEE-based methods are able to protect the overall model parameters in a computation-efficient way, they still suffer from prohibitive communication costs between TEE and CPU/GPU, making it impractical to deploy for edge LLMs. To protect the foundational capabilities of edge LLMs, we propose CoreGuard, a computation- and communication-efficient model protection approach against model stealing on edge devices. The core component of CoreGuard is a lightweight and propagative authorization module residing in TEE. Extensive experiments show that CoreGuard achieves the same security protection as the black-box security guarantees with negligible overhead.
- Abstract(参考訳): プロプライエタリな大規模言語モデル(LLM)は、様々なタスクにまたがる例外的な一般化能力を示す。
さらに、エッジデバイスにLLMをデプロイすることは、効率性とプライバシの理由からトレンドになっている。
しかし,プロプライエタリなLDMのエッジ展開には新たなセキュリティ脅威が伴う。エッジデプロイされたLDMを入手したアタッカーは,その高度な一般化能力から,様々なタスクのベースモデルとして容易に利用することができる。
残念ながら、既存のモデル保護メカニズムはタスク固有であり、信頼された実行環境(TEE)を使用してタスク関連のパラメータを保護することに集中するため、汎用LLMを保護できないことが多い。
最近のTEEベースの手法では、全体のモデルパラメータを計算効率のよい方法で保護することができるが、それでもTEEとCPU/GPU間の通信コストが禁じられているため、エッジLLMへのデプロイは現実的ではない。
エッジLCMの基本機能を保護するため,エッジデバイス上でのモデル盗難に対する計算・通信効率の高いモデル保護手法であるCoreGuardを提案する。
CoreGuardの中核となるコンポーネントは、軽量でプロパガンダな認証モジュールで、TEE内にあります。
大規模な実験によると、CoreGuardはブラックボックスのセキュリティ保証と同じセキュリティ保護を無視可能なオーバーヘッドで達成している。
関連論文リスト
- AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents [84.96249955105777]
LLMエージェントは誤用された場合、より大きなリスクを引き起こすが、その堅牢性は未発見のままである。
我々は, LLMエージェント誤用の研究を容易にするために, AgentHarmと呼ばれる新しいベンチマークを提案する。
主要なLLMは、ジェイルブレイクなしで悪意のあるエージェント要求に驚くほど準拠している。
論文 参考訳(メタデータ) (2024-10-11T17:39:22Z) - Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models [8.024771725860127]
大きな言語モデル(LLM)は、安全メカニズムをバイパスするジェイルブレイク攻撃に対して脆弱なままである。
我々は, LLMの安全性ポリシーの活性化を前提として, 計算資源を占有する新しい拡張性のあるジェイルブレイク攻撃を導入する。
論文 参考訳(メタデータ) (2024-10-05T15:10:01Z) - LoRA-Guard: Parameter-Efficient Guardrail Adaptation for Content Moderation of Large Language Models [15.900125475191958]
大規模言語モデル(LLM)のコンテンツモデレーションのための安全アライメントの代替としてガードレールが登場した。
LLMとガードレールモデル間の知識共有に依存するパラメータ効率の高いガードレール適応法であるLoRA-Guardを導入する。
LoRA-Guardは100-1000倍のパラメータオーバヘッドで既存の手法より優れ、精度を保ちながらオンデバイスコンテンツのモデレーションを実現している。
論文 参考訳(メタデータ) (2024-07-03T10:38:40Z) - GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning [79.07152553060601]
大規模言語モデル(LLM)の安全性を高める既存の手法は、LLMエージェントに直接転送することはできない。
我々は、他のLLMエージェントに対するガードレールとして、最初のLLMエージェントであるGuardAgentを提案する。
GuardAgentは、1)提供されたガードリクエストを分析してタスクプランを作成し、2)タスクプランに基づいてガードレールコードを生成し、APIを呼び出すか、または外部エンジンを使用してコードを実行する。
論文 参考訳(メタデータ) (2024-06-13T14:49:26Z) - SelfDefend: LLMs Can Defend Themselves against Jailbreaking in a Practical Manner [21.414701448926614]
本稿では,自衛隊(SelfDefend)と呼ばれる総称LDMジェイルブレイク防御フレームワークを紹介する。
我々は、一般的なGPT-3.5/4モデルを用いて、主要なジェイルブレイク攻撃すべてに対して実証的に検証した。
これらのモデルは6つの最先端の防御性能を上回り、GPT-4ベースのSelfDefendの性能に匹敵する。
論文 参考訳(メタデータ) (2024-06-08T15:45:31Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - TransLinkGuard: Safeguarding Transformer Models Against Model Stealing in Edge Deployment [34.8682729537795]
エッジデバイス上でのモデル盗難に対するプラグアンドプレイモデル保護手法であるTransLinkGuardを提案する。
TransLinkGuardの中核となるのは、セキュアな環境にある軽量の認証モジュールである。
大規模な実験によると、TransLinkGuardはブラックボックスのセキュリティ保証と同じセキュリティ保護を無視可能なオーバーヘッドで達成している。
論文 参考訳(メタデータ) (2024-04-17T07:08:45Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
最近の研究は、テキストのモデレーションが防御をバイパスするジェイルブレイクのプロンプトを生み出すことを示している。
検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。
テキストに対する既存の離散化の弱点と比較的高いコストの最適化が組み合わさって、標準適応攻撃をより困難にしていることがわかった。
論文 参考訳(メタデータ) (2023-09-01T17:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。