論文の概要: Federated Learning with Heterogeneous Data Handling for Robust Vehicular Object Detection
- arxiv url: http://arxiv.org/abs/2405.01108v1
- Date: Thu, 2 May 2024 09:14:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:13:51.766721
- Title: Federated Learning with Heterogeneous Data Handling for Robust Vehicular Object Detection
- Title(参考訳): ロバストな車両物体検出のための不均一データ処理によるフェデレーション学習
- Authors: Ahmad Khalil, Tizian Dege, Pegah Golchin, Rostyslav Olshevskyi, Antonio Fernandez Anta, Tobias Meuser,
- Abstract要約: 我々は、最先端のFedProxとFedLAの上に構築された新しいFL法であるFedProx+LAを紹介する。
連続オンライン物体検出モデルトレーニングにおけるFedProx+LAの有効性を評価する。
- 参考スコア(独自算出の注目度): 0.6439226140891733
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the pursuit of refining precise perception models for fully autonomous driving, continual online model training becomes essential. Federated Learning (FL) within vehicular networks offers an efficient mechanism for model training while preserving raw sensory data integrity. Yet, FL struggles with non-identically distributed data (e.g., quantity skew), leading to suboptimal convergence rates during model training. In previous work, we introduced FedLA, an innovative Label-Aware aggregation method addressing data heterogeneity in FL for generic scenarios. In this paper, we introduce FedProx+LA, a novel FL method building upon the state-of-the-art FedProx and FedLA to tackle data heterogeneity, which is specifically tailored for vehicular networks. We evaluate the efficacy of FedProx+LA in continuous online object detection model training. Through a comparative analysis against conventional and state-of-the-art methods, our findings reveal the superior convergence rate of FedProx+LA. Notably, if the label distribution is very heterogeneous, our FedProx+LA approach shows substantial improvements in detection performance compared to baseline methods, also outperforming our previous FedLA approach. Moreover, both FedLA and FedProx+LA increase convergence speed by 30% compared to baseline methods.
- Abstract(参考訳): 完全自律運転のための正確な知覚モデルを改善するためには,連続的なオンラインモデルトレーニングが不可欠である。
車両ネットワーク内のフェデレートラーニング(FL)は、生の知覚データの整合性を保ちながら、モデルトレーニングの効率的なメカニズムを提供する。
しかし、FLは、同定されていない分散データ(例えば、量スキュー)と苦労し、モデルトレーニング中に最適下限収束率をもたらす。
前回の研究で、汎用シナリオのためのFLにおけるデータ不均一性に対処する革新的なラベル・アウェアアグリゲーション手法であるFedLAを紹介した。
本稿では,最新のFedProxとFedLAをベースとした新しいFL法であるFedProx+LAを紹介する。
連続オンライン物体検出モデルトレーニングにおけるFedProx+LAの有効性を評価する。
従来の手法と最先端手法との比較分析により,FedProx+LAの収束速度が優れていることが明らかとなった。
特に,ラベル分布が非常に異種である場合,FedProx+LA法では,ベースライン法に比べて検出性能が大幅に向上し,従来のFedLA法よりも優れていた。
さらに,FedLAとFedProx+LAは,ベースライン法と比較して収束速度を30%向上させた。
関連論文リスト
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
我々はFedSkipと呼ばれるデータ駆動型アプローチを導入し、フェデレーション平均化を定期的にスキップし、ローカルモデルをクロスデバイスに分散することで、クライアントの最適化を改善する。
我々は、FedSkipがはるかに高い精度、より良いアグリゲーション効率、競合する通信効率を達成することを示すために、さまざまなデータセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2022-12-14T13:57:01Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Communication-Efficient Diffusion Strategy for Performance Improvement
of Federated Learning with Non-IID Data [10.112913394578703]
フェデレートラーニング(FL)は、集中学習におけるプライバシー漏洩問題に対処する新しい学習パラダイムである。
FLでは,非独立かつ同一に分散した(非IID)特性を持つユーザは,グローバルモデルの性能を低下させる可能性がある。
非IIDデータを用いたFL性能を最大化するために,機械学習モデル(FedDif)の新たな拡散戦略を提案する。
論文 参考訳(メタデータ) (2022-07-15T14:28:41Z) - Sparse Federated Learning with Hierarchical Personalized Models [24.763028713043468]
フェデレートラーニング(FL)は、ユーザのプライベートデータを収集することなく、プライバシセーフで信頼性の高い協調トレーニングを実現する。
階層型パーソナライズされたモデルを用いたスパースフェデレーション学習(sFedHP)という,モロー包絡に基づく階層型近位写像を用いたパーソナライズされたFLアルゴリズムを提案する。
また、連続的に微分可能な近似L1ノルムをスパース制約として使用して通信コストを低減させる。
論文 参考訳(メタデータ) (2022-03-25T09:06:42Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Federated Learning Over Cellular-Connected UAV Networks with Non-IID
Datasets [19.792426676330212]
フェデレートラーニング(FL)は有望な分散ラーニング技術である。
本稿では,セルラー接続型無人航空機(UAV)ネットワーク上での新しいFLモデルを提案する。
本稿では,セル接続型UAVネットワークにおけるアップリンク停止確率の抽出可能な解析フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-13T23:15:20Z) - Prototype Guided Federated Learning of Visual Feature Representations [15.021124010665194]
Federated Learning(FL)は、分散モデルトレーニングを可能にするフレームワークである。
既存の手法は、内部表現を無視したモデルを集約する。
我々は、分散データ上で学習した表現のマージンを用いてクライアントの偏差を計算するFedProtoを紹介する。
論文 参考訳(メタデータ) (2021-05-19T08:29:12Z) - Federated Unlearning [24.60965999954735]
Federated Learning(FL)は、有望な分散機械学習(ML)パラダイムとして登場した。
忘れられる権利」とデータ中毒攻撃に対抗するための実用的なニーズは、訓練されたFLモデルから特定のトレーニングデータを削除または解読できる効率的な技術を必要とします。
FedEraser は、フェデレーション クライアントのデータがグローバル FL モデルに与える影響を排除することができる最初のフェデレーション未学習方法論です。
論文 参考訳(メタデータ) (2020-12-27T08:54:37Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
フェデレートラーニング(Federated Learning、FL)は、集中型モデルの分散ラーニングのためのフレームワークである。
我々は,共通局所勾配勾配勾配(SGD)FLアルゴリズムを強化するコンバージェント OTA FL (COTAF) アルゴリズムを開発した。
我々は,COTAFにより誘導されるプリコーディングが,OTA FLを用いて訓練されたモデルの収束率と精度を顕著に向上させることを示す。
論文 参考訳(メタデータ) (2020-09-27T08:28:25Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。