Why Tabular Foundation Models Should Be a Research Priority
- URL: http://arxiv.org/abs/2405.01147v2
- Date: Sun, 2 Jun 2024 14:50:49 GMT
- Title: Why Tabular Foundation Models Should Be a Research Priority
- Authors: Boris van Breugel, Mihaela van der Schaar,
- Abstract summary: Tabular data is the dominant modality in many fields, yet it is given hardly any research attention and significantly lags behind in terms of scale and power.
We believe the time is now to start developing tabular foundation models, or what we coin a Large Tabular Model (LTM)
- Score: 65.75744962286538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent text and image foundation models are incredibly impressive, and these models are attracting an ever-increasing portion of research resources. In this position piece we aim to shift the ML research community's priorities ever so slightly to a different modality: tabular data. Tabular data is the dominant modality in many fields, yet it is given hardly any research attention and significantly lags behind in terms of scale and power. We believe the time is now to start developing tabular foundation models, or what we coin a Large Tabular Model (LTM). LTMs could revolutionise the way science and ML use tabular data: not as single datasets that are analyzed in a vacuum, but contextualized with respect to related datasets. The potential impact is far-reaching: from few-shot tabular models to automating data science; from out-of-distribution synthetic data to empowering multidisciplinary scientific discovery. We intend to excite reflections on the modalities we study, and convince some researchers to study large tabular models.
Related papers
- MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
This dataset includes figures such as schematic diagrams, simulated images, macroscopic/microscopic photos, and experimental visualizations.
We developed benchmarks for scientific figure captioning and multiple-choice questions, evaluating six proprietary and over ten open-source models.
The dataset and benchmarks will be released to support further research.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - LaTable: Towards Large Tabular Models [63.995130144110156]
Tabular generative foundation models are hard to build due to the heterogeneous feature spaces of different datasets.
LaTable is a novel diffusion model that addresses these challenges and can be trained across different datasets.
We find that LaTable outperforms baselines on in-distribution generation, and that finetuning LaTable can generate out-of-distribution datasets better with fewer samples.
arXiv Detail & Related papers (2024-06-25T16:03:50Z) - Dataset Mention Extraction in Scientific Articles Using Bi-LSTM-CRF Model [0.0]
We show that citing datasets is not a common or standard practice in spite of recent efforts by data repositories and funding agencies.
A potential solution to this problem is to automatically extract dataset mentions from scientific articles.
In this work, we propose to achieve such extraction by using a neural network based on a Bi-LSTM-CRF architecture.
arXiv Detail & Related papers (2024-05-21T18:12:37Z) - How Robust are the Tabular QA Models for Scientific Tables? A Study using Customized Dataset [23.822733961152103]
"SciTabQA" is an innovative dataset to study question-answering over scientific heterogeneous data.
We benchmark three state-of-the-art Tabular QA models, and find that the best F1 score is only 0.462.
arXiv Detail & Related papers (2024-03-30T15:48:49Z) - TabuLa: Harnessing Language Models for Tabular Data Synthesis [5.102332247789348]
We develop Tabula, a new type of data synthesizer based on the language model structure.
We show that Tabula averagely reduces 46.2% training time per epoch compared to current LLMs-based state-of-the-art algorithm.
We also propose a token sequence compression strategy to significantly reduce training time while preserving the quality of synthetic data.
arXiv Detail & Related papers (2023-10-19T13:50:56Z) - From Supervised to Generative: A Novel Paradigm for Tabular Deep Learning with Large Language Models [18.219485459836285]
Generative Tabular Learning (GTL) is a novel framework that integrates the advanced functionalities of large language models (LLMs)
Our empirical study spans 384 public datasets, rigorously analyzing GTL's scaling behaviors.
GTL-LLaMA-2 model demonstrates superior zero-shot and in-context learning capabilities across numerous classification and regression tasks.
arXiv Detail & Related papers (2023-10-11T09:37:38Z) - Generating tabular datasets under differential privacy [0.0]
We introduce Differential Privacy (DP) into the training process of deep neural networks.
This creates a trade-off between the quality and privacy of the resulting data.
We implement novel end-to-end models that leverage attention mechanisms.
arXiv Detail & Related papers (2023-08-28T16:35:43Z) - Generative Table Pre-training Empowers Models for Tabular Prediction [71.76829961276032]
We propose TapTap, the first attempt that leverages table pre-training to empower models for tabular prediction.
TapTap can generate high-quality synthetic tables to support various applications, including privacy protection, low resource regime, missing value imputation, and imbalanced classification.
It can be easily combined with various backbone models, including LightGBM, Multilayer Perceptron (MLP) and Transformer.
arXiv Detail & Related papers (2023-05-16T06:37:38Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.