論文の概要: TartuNLP at EvaLatin 2024: Emotion Polarity Detection
- arxiv url: http://arxiv.org/abs/2405.01159v2
- Date: Mon, 09 Dec 2024 13:41:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:49:50.194390
- Title: TartuNLP at EvaLatin 2024: Emotion Polarity Detection
- Title(参考訳): EvaLatin 2024におけるTartuNLP:感情極性検出
- Authors: Aleksei Dorkin, Kairit Sirts,
- Abstract要約: 本稿では,EvaLatin 2024における感情極性検出のタスクを,TartuNLPチームに提出した。
本システムでは, 教師あり学習のためのトレーニングデータアノテート手法として, 1) オーガナイザが提供するレキシコンを用いて極性に基づくラベルを作成し, 2) GPT4でラベルを生成する。
この結果から,LLMによるアノテーションはラテン語のテキストに対して有望な結果を示すことがわかった。
- 参考スコア(独自算出の注目度): 0.21485350418225246
- License:
- Abstract: This paper presents the TartuNLP team submission to EvaLatin 2024 shared task of the emotion polarity detection for historical Latin texts. Our system relies on two distinct approaches to annotating training data for supervised learning: 1) creating heuristics-based labels by adopting the polarity lexicon provided by the organizers and 2) generating labels with GPT4. We employed parameter efficient fine-tuning using the adapters framework and experimented with both monolingual and cross-lingual knowledge transfer for training language and task adapters. Our submission with the LLM-generated labels achieved the overall first place in the emotion polarity detection task. Our results show that LLM-based annotations show promising results on texts in Latin.
- Abstract(参考訳): 本稿では,EvaLatin 2024にTartuNLPチームが提出した過去のラテン文字の感情極性検出タスクについて述べる。
我々のシステムは、教師あり学習のためのトレーニングデータアノテートのための2つの異なるアプローチに依存している。
1) 主催者が提供する極性レキシコンを採用してヒューリスティックスに基づくラベルを作成すること
2) GPT4 でラベルを生成する。
パラメータ効率のよい微調整をアダプタフレームワークを用いて行い,学習言語とタスクアダプタの単言語/言語間知識伝達実験を行った。
感情極性検出タスクにおいて, LLM 生成ラベルを用いた提案は, 総合的に第1位を達成できた。
この結果から,LLMによるアノテーションはラテン語のテキストに対して有望な結果を示すことがわかった。
関連論文リスト
- A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
論文 参考訳(メタデータ) (2024-05-20T08:41:15Z) - Nostra Domina at EvaLatin 2024: Improving Latin Polarity Detection through Data Augmentation [11.613446814180843]
提案手法は,$k$-meansアルゴリズムを用いて提案する。
ニューラルネットワークにはさまざまなラテン大言語モデル(LLM)が採用されています。
論文 参考訳(メタデータ) (2024-04-11T14:35:23Z) - IITK at SemEval-2024 Task 1: Contrastive Learning and Autoencoders for Semantic Textual Relatedness in Multilingual Texts [4.78482610709922]
本稿では,SemEval-2024 Task 1: Semantic Textual Relatednessについて述べる。
この課題は、14言語における文のペア間の関連度を自動的に検出することに焦点を当てている。
論文 参考訳(メタデータ) (2024-04-06T05:58:42Z) - Native Language Identification with Large Language Models [60.80452362519818]
我々はGPTモデルがNLI分類に熟練していることを示し、GPT-4は0ショット設定でベンチマーク11テストセットで91.7%の新たなパフォーマンス記録を樹立した。
また、従来の完全教師付き設定とは異なり、LLMは既知のクラスに制限されずにNLIを実行できることを示す。
論文 参考訳(メタデータ) (2023-12-13T00:52:15Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
英語のような高リソース言語で訓練された言語モデルの言語間移動は、多くのNLPタスクのために広く研究されている。
並列および大規模多言語会話データセットである言語間アライメント事前学習のためのXSGDを導入する。
協調的な言語間表現を容易にするために,アライメントプロンプトを学習するための効率的なプロンプトチューニング手法を開発した。
論文 参考訳(メタデータ) (2023-04-03T18:46:01Z) - LSA-T: The first continuous Argentinian Sign Language dataset for Sign
Language Translation [52.87578398308052]
手話翻訳(SLT)は、人間とコンピュータの相互作用、コンピュータビジョン、自然言語処理、機械学習を含む活発な研究分野である。
本稿では,最初の連続的アルゼンチン手話(LSA)データセットを提案する。
このビデオには、CN Sordos YouTubeチャンネルから抽出されたLCAの14,880の文レベルのビデオと、各署名者のためのラベルとキーポイントアノテーションが含まれている。
論文 参考訳(メタデータ) (2022-11-14T14:46:44Z) - BEIKE NLP at SemEval-2022 Task 4: Prompt-Based Paragraph Classification
for Patronizing and Condescending Language Detection [13.944149742291788]
PCL検出タスクは、メディアの脆弱なコミュニティを保護し、あるいは支持している言語を特定することを目的としている。
本稿では,段落分類における素早い学習の力を活用した解法について紹介する。
論文 参考訳(メタデータ) (2022-08-02T08:38:47Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
本稿では,多言語言語モデルを用いて,それらのパラメータに格納された言語間語彙の知識量を探索し,元の多言語LMと比較する。
また、この知識を付加的に微調整した多言語モデルにより公開する新しい手法も考案した。
標準ベンチマークの大幅な向上を報告します。
論文 参考訳(メタデータ) (2022-04-30T13:23:16Z) - Explicit Alignment Objectives for Multilingual Bidirectional Encoders [111.65322283420805]
本稿では,多言語エンコーダAMBER(Aligned Multilingual Bi-directional EncodeR)の学習方法を提案する。
AMBERは、異なる粒度で多言語表現を整列する2つの明示的なアライメント目標を使用して、追加の並列データに基づいて訓練される。
実験結果から、AMBERは、シーケンスタグ付けで1.1平均F1スコア、XLMR-大規模モデル上での検索で27.3平均精度を得ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T18:34:13Z) - NLPDove at SemEval-2020 Task 12: Improving Offensive Language Detection
with Cross-lingual Transfer [10.007363787391952]
本稿では,攻撃的言語を多言語で識別する手法について述べる。
本研究では,異なるしきい値を持つ半教師付きラベルの追加と,データ選択による言語間移動という2つのデータ拡張戦略について検討する。
われわれの多言語システムはOffensEval 2020でギリシャ語、デンマーク語、トルコ語で競争の結果を得た。
論文 参考訳(メタデータ) (2020-08-04T06:20:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。