論文の概要: Goal-conditioned reinforcement learning for ultrasound navigation guidance
- arxiv url: http://arxiv.org/abs/2405.01409v2
- Date: Wed, 22 May 2024 14:34:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 05:20:55.755351
- Title: Goal-conditioned reinforcement learning for ultrasound navigation guidance
- Title(参考訳): 超音波ナビゲーション誘導のためのゴール条件強化学習
- Authors: Abdoul Aziz Amadou, Vivek Singh, Florin C. Ghesu, Young-Ho Kim, Laura Stanciulescu, Harshitha P. Sai, Puneet Sharma, Alistair Young, Ronak Rajani, Kawal Rhode,
- Abstract要約: 目標条件強化学習(G)としてのコントラスト学習に基づく新しい超音波ナビゲーション支援手法を提案する。
我々は,新しいコントラスト的患者法 (CPB) とデータ拡張型コントラスト的損失を用いて,従来の枠組みを拡張した。
提案法は, 789人の大容量データセットを用いて開発され, 平均誤差は6.56mm, 9.36°であった。
- 参考スコア(独自算出の注目度): 4.648318344224063
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transesophageal echocardiography (TEE) plays a pivotal role in cardiology for diagnostic and interventional procedures. However, using it effectively requires extensive training due to the intricate nature of image acquisition and interpretation. To enhance the efficiency of novice sonographers and reduce variability in scan acquisitions, we propose a novel ultrasound (US) navigation assistance method based on contrastive learning as goal-conditioned reinforcement learning (GCRL). We augment the previous framework using a novel contrastive patient batching method (CPB) and a data-augmented contrastive loss, both of which we demonstrate are essential to ensure generalization to anatomical variations across patients. The proposed framework enables navigation to both standard diagnostic as well as intricate interventional views with a single model. Our method was developed with a large dataset of 789 patients and obtained an average error of 6.56 mm in position and 9.36 degrees in angle on a testing dataset of 140 patients, which is competitive or superior to models trained on individual views. Furthermore, we quantitatively validate our method's ability to navigate to interventional views such as the Left Atrial Appendage (LAA) view used in LAA closure. Our approach holds promise in providing valuable guidance during transesophageal ultrasound examinations, contributing to the advancement of skill acquisition for cardiac ultrasound practitioners.
- Abstract(参考訳): 経食道心エコー法(TEE)は, 診断・介入術において重要な役割を担っている。
しかし、画像の取得と解釈の複雑な性質のため、効果的に広範囲な訓練が必要である。
初心者ソノグラフィーの効率を高め,スキャン取得における可変性を低減するため,目標条件強化学習(GCRL)としてコントラスト学習に基づく超音波ナビゲーション支援手法を提案する。
我々は,新しいコントラスト的患者バッチリング法 (CPB) とデータ拡張型コントラスト的損失を用いて,従来の枠組みを拡張した。
提案するフレームワークは,標準的な診断と,単一モデルによる複雑な介入ビューの両立を可能にする。
提案手法は789名の患者を対象とした大規模データセットを用いて開発され,140名の患者を対象に平均6.56mm,9.36°の角度での誤差を得た。
さらに,LAA閉鎖に使用される左心房アプリケージ(LAA)ビューのような介入的視点にナビゲートする手法の能力を定量的に検証した。
本手法は,経食道超音波検査において有意義なガイダンスを提供することを約束し,心超音波検査者に対する技術習得の進展に寄与する。
関連論文リスト
- Sequence-aware Pre-training for Echocardiography Probe Guidance [66.35766658717205]
心臓超音波は、(1)心臓の本質的に複雑な構造、(2)重要な個人差の2つの大きな課題に直面している。
これまでの研究は、心臓のパーソナライズされた構造的特徴よりも、心臓の2Dおよび3Dの人口平均構造についてしか学ばなかった。
パーソナライズされた2次元と3次元の心構造特徴を学習するためのシーケンス認識型自己教師付き事前学習法を提案する。
論文 参考訳(メタデータ) (2024-08-27T12:55:54Z) - Hybrid Deep Learning-Based for Enhanced Occlusion Segmentation in PICU Patient Monitoring [0.0]
本稿では,PICU内の遠隔監視アプリケーションで発生する共通閉塞を分割するハイブリッド手法を提案する。
私たちのアプローチは、限られたトレーニングデータシナリオのためのディープラーニングパイプラインの作成に重点を置いています。
提案したフレームワークは、92.5%の精度、93.8%のリコール、90.3%の精度、92.0%のF1スコアで全体的な分類性能が得られる。
論文 参考訳(メタデータ) (2024-07-18T09:37:55Z) - Self-Supervised Learning for Interventional Image Analytics: Towards Robust Device Trackers [6.262161803642583]
我々は,1600万以上の干渉X線フレームからなる非常に大きなデータコホートから手続き的特徴を学習するための新しい手法を提案する。
本手法は,フレームベース再構成を利用してフレーム間時間対応を微妙に学習するマスク付き画像モデリング技術に基づいている。
実験の結果,提案手法は参照解に対する最大追従誤差を66.31%削減できることがわかった。
論文 参考訳(メタデータ) (2024-05-02T10:18:22Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
冠状動脈構造の複雑さとX線像の固有ノイズが相まって,この課題には大きな課題が生じる。
心血管狭窄セグメンテーションに対する半監督的アプローチを提案する。
自動冠状動脈疾患診断では異常な成績を示した。
論文 参考訳(メタデータ) (2023-11-17T02:01:19Z) - Interpretable and intervenable ultrasonography-based machine learning
models for pediatric appendicitis [8.083060080133842]
虫垂炎は小児腹部手術の最も多い原因の一つである。
虫垂炎に対する以前の意思決定支援システムは、臨床、検査、スコアリング、およびCTデータに焦点を当ててきた。
超音波画像を用いた虫垂炎の診断・管理・重症度予測のための解釈可能な機械学習モデルを提案する。
論文 参考訳(メタデータ) (2023-02-28T10:08:11Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
3次元医用画像分割作業において,Deep Learning (DL) 手法を体系的に評価した。
本手法は放射線外科治療プロセスに統合され,臨床ワークフローに直接影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-21T16:15:40Z) - Automated Deep Learning Analysis of Angiography Video Sequences for
Coronary Artery Disease [4.233200689119682]
冠状動脈閉塞(狭窄)の評価は、現在、医師による冠動脈造影ビデオシーケンスの視覚的評価によって行われている。
深層学習に基づく自動解析パイプラインを報告し,冠動脈血管造影を迅速かつ客観的に評価する。
我々は、ResNetやU-Netといった強力なディープラーニングアプローチと、従来の画像処理と幾何解析を組み合わせた。
論文 参考訳(メタデータ) (2021-01-29T10:23:49Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。