論文の概要: Self-Supervised Learning for Interventional Image Analytics: Towards Robust Device Trackers
- arxiv url: http://arxiv.org/abs/2405.01156v1
- Date: Thu, 2 May 2024 10:18:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:04:04.913721
- Title: Self-Supervised Learning for Interventional Image Analytics: Towards Robust Device Trackers
- Title(参考訳): インターベンショナル・イメージ・アナリティクスのための自己監督型学習:ロバスト・デバイス・トラッカーを目指して
- Authors: Saahil Islam, Venkatesh N. Murthy, Dominik Neumann, Badhan Kumar Das, Puneet Sharma, Andreas Maier, Dorin Comaniciu, Florin C. Ghesu,
- Abstract要約: 我々は,1600万以上の干渉X線フレームからなる非常に大きなデータコホートから手続き的特徴を学習するための新しい手法を提案する。
本手法は,フレームベース再構成を利用してフレーム間時間対応を微妙に学習するマスク付き画像モデリング技術に基づいている。
実験の結果,提案手法は参照解に対する最大追従誤差を66.31%削減できることがわかった。
- 参考スコア(独自算出の注目度): 6.262161803642583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An accurate detection and tracking of devices such as guiding catheters in live X-ray image acquisitions is an essential prerequisite for endovascular cardiac interventions. This information is leveraged for procedural guidance, e.g., directing stent placements. To ensure procedural safety and efficacy, there is a need for high robustness no failures during tracking. To achieve that, one needs to efficiently tackle challenges, such as: device obscuration by contrast agent or other external devices or wires, changes in field-of-view or acquisition angle, as well as the continuous movement due to cardiac and respiratory motion. To overcome the aforementioned challenges, we propose a novel approach to learn spatio-temporal features from a very large data cohort of over 16 million interventional X-ray frames using self-supervision for image sequence data. Our approach is based on a masked image modeling technique that leverages frame interpolation based reconstruction to learn fine inter-frame temporal correspondences. The features encoded in the resulting model are fine-tuned downstream. Our approach achieves state-of-the-art performance and in particular robustness compared to ultra optimized reference solutions (that use multi-stage feature fusion, multi-task and flow regularization). The experiments show that our method achieves 66.31% reduction in maximum tracking error against reference solutions (23.20% when flow regularization is used); achieving a success score of 97.95% at a 3x faster inference speed of 42 frames-per-second (on GPU). The results encourage the use of our approach in various other tasks within interventional image analytics that require effective understanding of spatio-temporal semantics.
- Abstract(参考訳): 生体X線画像取得におけるカテーテルのガイドなどの装置の正確な検出と追跡は、血管内心臓の介入に必須の条件である。
この情報は手続き的指導、例えばステント配置の指示に利用される。
プロシージャの安全性と有効性を確保するために、追跡中に障害のない高い堅牢性が必要である。
そのためには、コントラスト剤や他の外部機器やワイヤによるデバイス・オブスキュレーション、視野角や取得角度の変化、心臓や呼吸運動による連続的な動きといった課題に効果的に取り組む必要がある。
上記の課題を克服するために,画像シーケンスデータに対する自己監督を用いて,1600万以上の干渉X線フレームからなる非常に大きなデータコホートから時空間的特徴を学習する手法を提案する。
本手法は,フレーム補間に基づく再構成を利用してフレーム間時間対応を微妙に学習するマスク付き画像モデリング技術に基づいている。
結果のモデルにエンコードされた機能は、下流で微調整される。
提案手法は, マルチステージ機能融合, マルチタスク, フロー正規化を用いた超最適化参照ソリューションと比較して, 最先端性能, 特にロバスト性を実現している。
実験の結果,提案手法は参照解に対する最大追従誤差を66.31%削減し(フロー正規化の場合23.20%), 97.95%の高速化(GPUでは42フレーム/秒)で成功率97.95%を達成した。
その結果,時空間意味論を効果的に理解する必要のある介入画像解析における様々なタスクに,我々のアプローチを取り入れることが促進された。
関連論文リスト
- Unsupervised Training of a Dynamic Context-Aware Deep Denoising Framework for Low-Dose Fluoroscopic Imaging [6.130738760059542]
フルオロスコープは医用画像におけるリアルタイムX線可視化に重要である。
低線量画像はノイズによって損なわれ、診断精度に影響を及ぼす可能性がある。
蛍光画像系列を動的に認識する教師なし学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T13:39:31Z) - CPT-Interp: Continuous sPatial and Temporal Motion Modeling for 4D Medical Image Interpolation [22.886841531680567]
4D医療画像からの運動情報は、臨床評価と放射線治療計画のための患者解剖学の動的変化に関する重要な洞察を提供する。
しかし、画像ハードウェアの物理的および技術的な制約は、時間分解能と画質の妥協を必要とすることが多い。
暗黙的神経表現を用いた患者解剖運動を連続的にモデル化するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T09:35:42Z) - Goal-conditioned reinforcement learning for ultrasound navigation guidance [4.648318344224063]
目標条件強化学習(G)としてのコントラスト学習に基づく新しい超音波ナビゲーション支援手法を提案する。
我々は,新しいコントラスト的患者法 (CPB) とデータ拡張型コントラスト的損失を用いて,従来の枠組みを拡張した。
提案法は, 789人の大容量データセットを用いて開発され, 平均誤差は6.56mm, 9.36°であった。
論文 参考訳(メタデータ) (2024-05-02T16:01:58Z) - Attention-aware non-rigid image registration for accelerated MR imaging [10.47044784972188]
我々は,MRIの完全サンプリングと高速化のために,非厳密なペアワイズ登録を行うことのできる,注目に敏感なディープラーニングベースのフレームワークを提案する。
我々は、複数の解像度レベルで、登録された画像ペア間の類似性マップを構築するために、局所的な視覚表現を抽出する。
本モデルでは, 異なるサンプリング軌道にまたがって, 安定かつ一貫した運動場を導出することを示す。
論文 参考訳(メタデータ) (2024-04-26T14:25:07Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
リアルタイムガイドワイヤ分割と追跡のための2段階のディープラーニングフレームワークを提案する。
第1段階では、ヨロフ5検出器が元のX線画像と合成画像を使って訓練され、ターゲットのガイドワイヤのバウンディングボックスを出力する。
第2段階では、検出された各バウンディングボックスにガイドワイヤを分割するために、新規で効率的なネットワークが提案されている。
論文 参考訳(メタデータ) (2024-04-12T20:39:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
本稿では,マルチモーダルの観点から視覚モダリティの課題に取り組む。
本稿では,冗長な情報問題とスパース空間問題に対処するために,クロスモーダルガイダンス(CMG)を提案する。
視覚異常検出のためのよりコンパクトな潜在空間を学習するために、CMLEは言語モダリティから相関構造行列を学習する。
論文 参考訳(メタデータ) (2023-10-04T13:44:56Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
本稿では,シーケンスレベルのパッチから時間的特徴を直接学習するための視覚変換器に基づくアプローチを提案する。
本研究では,白内障手術用ビデオデータセットである白内障-101とD99に対するアプローチを広範に評価し,各種の最先端手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2023-07-20T17:57:04Z) - Spatial gradient consistency for unsupervised learning of hyperspectral
demosaicking: Application to surgical imaging [4.795951381086172]
ハイパースペクトルイメージングは、組織の特徴化をリアルタイムで、高解像度で改善する可能性がある。
スナップショット画像の空間的・スペクトル的情報を完全に復元するには,復号化アルゴリズムが必要である。
トレーニング目的のスナップショット画像のみを必要とする、完全に教師なしのハイパースペクトル画像復号アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-21T18:07:14Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。