A Formulation of Quantum Fluid Mechanics and Trajectories
- URL: http://arxiv.org/abs/2405.01486v1
- Date: Thu, 2 May 2024 17:22:12 GMT
- Title: A Formulation of Quantum Fluid Mechanics and Trajectories
- Authors: James P. Finley,
- Abstract summary: A formalism of classical mechanics is given for time-dependent many-body states of quantum mechanics.
The familiar equations of energy, motion, and those of Lagrangian mechanics are obtained.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A formalism of classical mechanics is given for time-dependent many-body states of quantum mechanics, describing both fluid flow and point mass trajectories. The familiar equations of energy, motion, and those of Lagrangian mechanics are obtained. An energy and continuity equation is demonstrated to be equivalent to the real and imaginary parts of the time dependent Schroedinger equation, respectively, where the Schroedinger equation is in density matrix form. For certain stationary states, using Lagrangian mechanics and a Hamiltonian function for quantum mechanics, equations for point-mass trajectories are obtained. For 1-body states and fluid flows, the energy equation and equations of motion are the Bernoulli and Euler equations of fluid mechanics, respectively. Generalizations of the energy and Euler equations are derived to obtain equations that are in the same form as they are in classical mechanics. The fluid flow type is compressible, inviscid, irrotational, with the nonclassical element of local variable mass. Over all space mass is conserved. The variable mass is a necessary condition for the fluid flow to agree with the zero orbital angular momentum for s states of hydrogen. Cross flows are examined, where velocity directions are changed without changing the kinetic energy. For one-electron atoms, the velocity modification gives closed orbits for trajectories, and mass conservation, vortexes, and density stratification for fluid flows. For many body states, Under certain conditions, and by hypotheses, Euler equations of orbital-flows are obtained. One-body Schroedinger equations that are a generalization of the Hartree-Fock equations are also obtained. These equations contain a quantum Coulomb's law, involving the 2-body pair function of reduced density matrix theory that replace the charge densities.
Related papers
- Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.
We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.
We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Analog quantum simulation of parabolic partial differential equations using Jaynes-Cummings-like models [27.193565893837356]
We present a simplified analog quantum simulation protocol for preparing quantum states that embed solutions of parabolic partial differential equations.
The key idea is to approximate the heat equations by a system of hyperbolic heat equations that involve only first-order differential operators.
For a d-dimensional problem, we show that it is much more appropriate to use a single d-level quantum system - a qudit - instead of its qubit counterpart, and d+1 qumodes.
arXiv Detail & Related papers (2024-07-02T03:23:11Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum simulation of partial differential equations via
Schrodingerisation [31.986350313948435]
We present a simple new way to simulate general linear partial differential equations via quantum simulation.
Using a simple new transform, referred to as the warped phase transformation, any linear partial differential equation can be recast into a system of Schrodinger's equations.
This can be seen directly on the level of the dynamical equations without more sophisticated methods.
arXiv Detail & Related papers (2022-12-28T17:32:38Z) - Fields and Equations of Classical Mechanics for Quantum Mechanics [0.0]
An equation is also derived that is equivalent to the main equation of Bohmian mechanics.
For one-body systems, the Eulerian Eq. can model either a fluid or particle description of quantum states.
arXiv Detail & Related papers (2022-07-09T23:28:27Z) - Euler-Schrodinger Transformation [0.0]
We present a transformation that maps the Schrodinger equation of quantum mechanics to the incompressible Euler equations of fluid mechanics.
Interestingly, in our transformation, the equivalent of quantum potential becomes the physical surface tension.
Lastly, we show that using this transformation, the Bohm equation can be mapped to a particle's equation of motion moving on the free surface of the fluid.
arXiv Detail & Related papers (2021-05-25T23:08:15Z) - Classical and Quantum Brownian Motion [0.0]
In quantum mechanics electrons and other point particles are no waves and the chapter of quantum mechanics originated for the force carriers.
A new projector operator is proposed for the collapse of the wave function of a quantum particle moving in a classical environment.
Considering the Brownian dynamics in the frames of the Bohmian mechanics, the density functional Bohm-Langevin equation is proposed.
arXiv Detail & Related papers (2021-05-12T13:24:39Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Dissipative flow equations [62.997667081978825]
We generalize the theory of flow equations to open quantum systems focusing on Lindblad master equations.
We first test our dissipative flow equations on a generic matrix and on a physical problem with a driven-dissipative single fermionic mode.
arXiv Detail & Related papers (2020-07-23T14:47:17Z) - Relativistic Quantum Thermodynamics of Moving Systems [0.0]
We analyse the thermodynamics of a quantum system in a trajectory of constant velocity that interacts with a static thermal bath.
We derive the master equation for the reduced dynamics of the moving quantum system.
A moving heat bath is physically equivalent to a mixture of heat baths at rest, each with a different temperature.
arXiv Detail & Related papers (2020-06-22T15:18:55Z) - On Sylvester solution for degenerate eigenvalues [0.0]
We introduce the use of Sylvester's formula for systems with degenerate eigenvalues.
We include two other forms of analytical solutions namely adiabatic and Magnus approximations.
arXiv Detail & Related papers (2020-04-09T18:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.