論文の概要: WitheredLeaf: Finding Entity-Inconsistency Bugs with LLMs
- arxiv url: http://arxiv.org/abs/2405.01668v1
- Date: Thu, 2 May 2024 18:44:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 14:44:38.568497
- Title: WitheredLeaf: Finding Entity-Inconsistency Bugs with LLMs
- Title(参考訳): WitheredLeaf: LLMでエンティティ一貫性のないバグを見つける
- Authors: Hongbo Chen, Yifan Zhang, Xing Han, Huanyao Rong, Yuheng Zhang, Tianhao Mao, Hang Zhang, XiaoFeng Wang, Luyi Xing, Xun Chen,
- Abstract要約: Entity-Inconsistency Bugs (EIB)はセマンティックバグに由来する。
EIBは微妙で、何年も検出されていない。
本稿では, WitheredLeaf という新しい EIB 検出システムを提案する。
- 参考スコア(独自算出の注目度): 22.22945885085009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Originating from semantic bugs, Entity-Inconsistency Bugs (EIBs) involve misuse of syntactically valid yet incorrect program entities, such as variable identifiers and function names, which often have security implications. Unlike straightforward syntactic vulnerabilities, EIBs are subtle and can remain undetected for years. Traditional detection methods, such as static analysis and dynamic testing, often fall short due to the versatile and context-dependent nature of EIBs. However, with advancements in Large Language Models (LLMs) like GPT-4, we believe LLM-powered automatic EIB detection becomes increasingly feasible through these models' semantics understanding abilities. This research first undertakes a systematic measurement of LLMs' capabilities in detecting EIBs, revealing that GPT-4, while promising, shows limited recall and precision that hinder its practical application. The primary problem lies in the model's tendency to focus on irrelevant code snippets devoid of EIBs. To address this, we introduce a novel, cascaded EIB detection system named WitheredLeaf, which leverages smaller, code-specific language models to filter out most negative cases and mitigate the problem, thereby significantly enhancing the overall precision and recall. We evaluated WitheredLeaf on 154 Python and C GitHub repositories, each with over 1,000 stars, identifying 123 new flaws, 45% of which can be exploited to disrupt the program's normal operations. Out of 69 submitted fixes, 27 have been successfully merged.
- Abstract(参考訳): セマンティックバグから派生したEntity-Inconsistency Bugs (EIB)は、しばしばセキュリティに影響を及ぼす変数識別子や関数名など、構文的に妥当で不正なプログラムエンティティを誤用する。
単純な構文上の脆弱性とは異なり、ERBは微妙であり、何年も検出されていない。
静的解析や動的テストのような従来の検出手法は、ERBの汎用性やコンテキスト依存性のため、しばしば不足する。
しかし, GPT-4のような大規模言語モデル(LLM)の進歩に伴い, これらのモデルのセマンティクス理解能力によって, LLM による自動 EIB 検出がますます実現可能になると信じている。
この研究はまず、ELBの検出におけるLCMの能力の体系的な測定を行い、GPT-4が期待されているものの、その実用性を妨げているリコールと精度が限られていることを明らかにした。
第一の問題は、EIBを欠いた無関係なコードスニペットにフォーカスする傾向にある。
そこで我々は,より小型のコード固有言語モデルを利用して,ほとんどの負のケースをフィルタリングし,問題を緩和し,全体的な精度とリコールを大幅に向上させる,新しいEIB検出システムであるWitheredLeafを導入する。
我々は154のPythonとCのGitHubリポジトリでWitheredLeafを評価し、それぞれ1000以上のスターを持ち、123の新たな欠陥を特定しました。
69件の修正案のうち、27件が合併に成功している。
関連論文リスト
- Automated Software Vulnerability Static Code Analysis Using Generative Pre-Trained Transformer Models [0.8192907805418583]
生成事前学習トランスフォーマーモデルは、様々な自然言語処理タスクにおいて驚くほど効果的であることが示されている。
我々は,脆弱なコード構文の存在を自動的に識別するタスクにおいて,オープンソースのGPTモデルの有効性を評価する。
論文 参考訳(メタデータ) (2024-07-31T23:33:26Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
我々は,事前訓練された大規模言語モデル (LLM) がゼロショットバッチレベルの異常検出器であることを示す。
本稿では,実異常検出におけるLCMの潜在性を明らかにするために,エンドツーエンドの微調整手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T04:17:03Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
安全でないユーザリクエストを認識して拒否する、大規模な言語モデル(LLM)の既存の評価は、3つの制限に直面している。
まず、既存の手法では、安全でないトピックの粗い粒度を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
第3に、既存の評価は大きなLCMに頼っているため、コストがかかる可能性がある。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Do Neutral Prompts Produce Insecure Code? FormAI-v2 Dataset: Labelling Vulnerabilities in Code Generated by Large Language Models [3.4887856546295333]
この研究は、最先端の大規模言語モデル(LLM)の比較分析を提供する。
中立なゼロショットプロンプトを使って単純なCプログラムを書く際に、脆弱性が発生する可能性を分析する。
論文 参考訳(メタデータ) (2024-04-29T01:24:14Z) - A Comprehensive Study of the Capabilities of Large Language Models for Vulnerability Detection [9.422811525274675]
大規模言語モデル(LLM)は、コード生成やその他のソフトウェアエンジニアリングタスクに大きな可能性を実証しています。
脆弱性検出は、ソフトウェアシステムのセキュリティ、完全性、信頼性を維持する上で非常に重要である。
最近の研究は、ジェネリックプロンプト技術を用いた脆弱性検出にLLMを適用しているが、このタスクの能力とそれらが犯すエラーの種類は未だ不明である。
論文 参考訳(メタデータ) (2024-03-25T21:47:36Z) - The Hitchhiker's Guide to Program Analysis: A Journey with Large
Language Models [18.026567399243]
大規模言語モデル(LLM)は静的解析に代わる有望な選択肢を提供する。
本稿では,LLM支援静的解析のオープン空間を深く掘り下げる。
LLiftは,静的解析ツールとLLMの両方を併用した,完全に自動化されたフレームワークである。
論文 参考訳(メタデータ) (2023-08-01T02:57:43Z) - Few-shot Instruction Prompts for Pretrained Language Models to Detect
Social Biases [55.45617404586874]
我々は、事前訓練された言語モデル(LM)を誘導する数ショットの命令ベース手法を提案する。
大規模なLMは、微調整モデルとよく似た精度で、異なる種類の細粒度バイアスを検出できることを示す。
論文 参考訳(メタデータ) (2021-12-15T04:19:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。