論文の概要: The Psychosocial Impacts of Generative AI Harms
- arxiv url: http://arxiv.org/abs/2405.01740v1
- Date: Thu, 2 May 2024 21:21:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 14:24:53.194553
- Title: The Psychosocial Impacts of Generative AI Harms
- Title(参考訳): ジェネレーティブAIハームの心理的影響
- Authors: Faye-Marie Vassel, Evan Shieh, Cassidy R. Sugimoto, Thema Monroe-White,
- Abstract要約: 生成言語モデル(LM)は、K-20の学校と1対1の学生設定で採用されつつある。
本稿では,オープン・エンド・プロンプトへの反応として,5つの主要な物語が生み出す心理社会的害について考察する。
- 参考スコア(独自算出の注目度): 0.33748750222488655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid emergence of generative Language Models (LMs) has led to growing concern about the impacts that their unexamined adoption may have on the social well-being of diverse user groups. Meanwhile, LMs are increasingly being adopted in K-20 schools and one-on-one student settings with minimal investigation of potential harms associated with their deployment. Motivated in part by real-world/everyday use cases (e.g., an AI writing assistant) this paper explores the potential psychosocial harms of stories generated by five leading LMs in response to open-ended prompting. We extend findings of stereotyping harms analyzing a total of 150K 100-word stories related to student classroom interactions. Examining patterns in LM-generated character demographics and representational harms (i.e., erasure, subordination, and stereotyping) we highlight particularly egregious vignettes, illustrating the ways LM-generated outputs may influence the experiences of users with marginalized and minoritized identities, and emphasizing the need for a critical understanding of the psychosocial impacts of generative AI tools when deployed and utilized in diverse social contexts.
- Abstract(参考訳): ジェネレーティブ言語モデル(LM)の急速な台頭は、それらの未検討の採用が多様なユーザーグループの社会的幸福に与える影響について懸念を募らせている。
一方、K-20の学校や1対1の学生設定では、LMが採用されつつある。
この論文は、現実/日常のユースケース(例えば、AI記述アシスタント)によって部分的に動機付けられ、オープン・エンド・プロンプトに反応する5つの主要なLMが生み出す、潜在的な精神社会的害について考察する。
本研究は, 学生の教室の相互作用に関連する150K100ワードの物語を分析し, ステレオタイピング障害の発見を拡張した。
LM生成されたキャラクターの人口動態と表現的害(消去、調整、ステレオタイピング)のパターンを調べ、特に過激なヴィグネットを強調し、LM生成されたアウトプットは、疎外的でマイノリティ化されたアイデンティティを持つユーザの体験に影響を与え、様々な社会的文脈に展開および活用する際に、生成AIツールの心理社会的影響に対する批判的な理解の必要性を強調する。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - AgentPeerTalk: Empowering Students through Agentic-AI-Driven Discernment of Bullying and Joking in Peer Interactions in Schools [0.0]
本研究では,大規模言語モデル(LLM)が,学校間交流におけるいじめと冗談を識別することで,学生に力を与える可能性について検討した。
ChatGPT-4はエージェントアプローチの実装後の文脈特異的な精度に優れていた。
論文 参考訳(メタデータ) (2024-07-27T05:50:02Z) - Modulating Language Model Experiences through Frictions [56.17593192325438]
言語モデルの過度な消費は、短期において未確認エラーを伝播し、長期的な批判的思考のために人間の能力を損なうリスクを出力する。
行動科学の介入にインスパイアされた言語モデル体験のための選択的摩擦を提案し,誤用を抑える。
論文 参考訳(メタデータ) (2024-06-24T16:31:11Z) - Laissez-Faire Harms: Algorithmic Biases in Generative Language Models [0.0]
そこで本研究では,最も広範に普及しているLMの5つのテキストから合成されたテキストが,未成年者に対する脱落,従属化,ステレオタイピングの被害を永久に及ぼしていることを示す。
我々は、そのような個人が、LM生成出力に遭遇する確率が数百から数千倍にも達するほど、偏見の証拠が広範囲にあることを発見した。
本研究は,言語モデルによる差別的被害から消費者を守るための緊急の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-04-11T05:09:03Z) - The Social Impact of Generative AI: An Analysis on ChatGPT [0.7401425472034117]
ジェネレーティブAIモデルの急速な開発は、そのメリット、制限、関連するリスクに関する熱い議論を引き起こしている。
生成モデルは、医療、金融、教育など、複数の分野にまたがって大きな可能性を秘めている。
本稿では,ChatGPTの事例を中心に,生成型AIツールの社会的意味を探求する方法論を採用する。
論文 参考訳(メタデータ) (2024-03-07T17:14:22Z) - Violation of Expectation via Metacognitive Prompting Reduces Theory of
Mind Prediction Error in Large Language Models [0.0]
大規模言語モデル(LLM)は、心の理論(ToM)タスクにおいて、魅力的な習熟度を示す。
この、観察不能な精神状態を他人に伝える能力は、人間の社会的認知に不可欠であり、人間と人工知能(AI)の主観的関係において同様に重要であることが証明される。
論文 参考訳(メタデータ) (2023-10-10T20:05:13Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
社会デマトグラフィープロンプトは、特定の社会デマトグラフィープロファイルを持つ人間が与える答えに向けて、プロンプトベースのモデルの出力を操縦する技術である。
ソシオデマトグラフィー情報はモデル予測に影響を及ぼし、主観的NLPタスクにおけるゼロショット学習を改善するのに有用であることを示す。
論文 参考訳(メタデータ) (2023-09-13T15:42:06Z) - Large Language Models Can Infer Psychological Dispositions of Social Media Users [1.0923877073891446]
GPT-3.5とGPT-4は、ゼロショット学習シナリオにおいて、ユーザのFacebookステータス更新からビッグファイブの性格特性を導出できるかどうかを検証する。
その結果, LLM-inferred と self-reported trait score の間には r =.29 (range = [.22,.33]) の相関が認められた。
予測は、いくつかの特徴について、女性と若い個人にとってより正確であることが判明し、基礎となるトレーニングデータやオンライン自己表現の違いから生じる潜在的なバイアスが示唆された。
論文 参考訳(メタデータ) (2023-09-13T01:27:48Z) - I am Only Happy When There is Light: The Impact of Environmental Changes
on Affective Facial Expressions Recognition [65.69256728493015]
本研究では,異なる画像条件が人間の表情からの覚醒の認識に与える影響について検討した。
以上の結果から,人間の感情状態の解釈が肯定的,否定的に大きく異なることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:28:26Z) - Language Generation Models Can Cause Harm: So What Can We Do About It?
An Actionable Survey [50.58063811745676]
この研究は、言語生成モデルから潜在的脅威や社会的害に対処するための実践的な方法の調査を提供する。
言語生成者のさまざまなリスク・ハームを検知・改善するための戦略の構造化された概要を提示するために、言語モデルリスクのいくつかの先行研究を取り上げる。
論文 参考訳(メタデータ) (2022-10-14T10:43:39Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
大規模事前訓練言語モデル(LM)は、望ましくない表現バイアスを示すのに潜在的に危険である。
テキスト生成における社会的バイアスを軽減するためのステップを提案する。
我々の経験的結果と人的評価は、重要な文脈情報を保持しながらバイアスを緩和する効果を示す。
論文 参考訳(メタデータ) (2021-06-24T17:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。