A Survey on Privacy-Preserving Caching at Network Edge: Classification, Solutions, and Challenges
- URL: http://arxiv.org/abs/2405.01844v3
- Date: Mon, 09 Dec 2024 01:39:15 GMT
- Title: A Survey on Privacy-Preserving Caching at Network Edge: Classification, Solutions, and Challenges
- Authors: Xianzhi Zhang, Yipeng Zhou, Di Wu, Quan Z. Sheng, Shazia Riaz, Miao Hu, Linchang Xiao,
- Abstract summary: Caching content at the edge network is a popular and effective technique widely deployed to alleviate the burden of network backhaul.<n>There has been some controversy over privacy violations in caching content at the edge network.
- Score: 23.242281571096782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Caching content at the edge network is a popular and effective technique widely deployed to alleviate the burden of network backhaul, shorten service delay and improve service quality. However, there has been some controversy over privacy violations in caching content at the edge network. On the one hand, the multi-access open edge network provides an ideal entrance or interface for external attackers to obtain private data from edge caches by extracting sensitive information. On the other hand, privacy can be infringed on by curious edge caching providers through caching trace analysis targeting the achievement of better caching performance or higher profits. Therefore, an in-depth understanding of privacy issues in edge caching networks is vital and indispensable for creating a privacy-preserving caching service at the edge network. In this article, we are among the first to fill this gap by examining privacy-preserving techniques for caching content at the edge network. Firstly, we provide an introduction to the background of privacy-preserving edge caching (PPEC). Next, we summarize the key privacy issues and present a taxonomy for caching at the edge network from the perspective of private information. Additionally, we conduct a retrospective review of the state-of-the-art countermeasures against privacy leakage from content caching at the edge network. Finally, we conclude the survey and envision challenges for future research.
Related papers
- Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
Privacy-preserving computer vision is an important emerging problem in machine learning and artificial intelligence.
We present anonymization pipeline that replaces sensitive human subjects in video datasets with synthetic avatars within context.
We also proposeMaskDP to protect non-anonymized but privacy sensitive background information.
arXiv Detail & Related papers (2024-10-22T15:22:53Z) - Differentially Private Data Release on Graphs: Inefficiencies and Unfairness [48.96399034594329]
This paper characterizes the impact of Differential Privacy on bias and unfairness in the context of releasing information about networks.
We consider a network release problem where the network structure is known to all, but the weights on edges must be released privately.
Our work provides theoretical foundations and empirical evidence into the bias and unfairness arising due to privacy in these networked decision problems.
arXiv Detail & Related papers (2024-08-08T08:37:37Z) - Consistent community detection in multi-layer networks with heterogeneous differential privacy [4.451479907610764]
We propose a personalized edge flipping mechanism that allows data publishers to protect edge information based on each node's privacy preference.
It can achieve differential privacy while preserving the community structure under the multi-layer degree-corrected block model.
We show that better privacy protection of edges can be obtained for a proportion of nodes while allowing other nodes to give up their privacy.
arXiv Detail & Related papers (2024-06-20T22:49:55Z) - PrivacyRestore: Privacy-Preserving Inference in Large Language Models via Privacy Removal and Restoration [18.11846784025521]
PrivacyRestore is a plug-and-play method to protect the privacy of user inputs during inference.
We create three datasets, covering medical and legal domains, to evaluate the effectiveness of PrivacyRestore.
arXiv Detail & Related papers (2024-06-03T14:57:39Z) - A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and
Applications [76.88662943995641]
Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data.
To address this issue, researchers have started to develop privacy-preserving GNNs.
Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain.
arXiv Detail & Related papers (2023-08-31T00:31:08Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
We propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way.
In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types.
To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users.
arXiv Detail & Related papers (2022-09-04T06:22:37Z) - Large-Scale Privacy-Preserving Network Embedding against Private Link
Inference Attacks [12.434976161956401]
We address a novel problem of privacy-preserving network embedding against private link inference attacks.
We propose to perturb the original network by adding or removing links, and expect the embedding generated on the perturbed network can leak little information about private links but hold high utility for various downstream tasks.
arXiv Detail & Related papers (2022-05-28T13:59:39Z) - Online Caching with Optimistic Learning [15.877673959068458]
This paper proposes a new algorithmic toolbox for tackling this problem through the lens of optimistic online learning.
We design online caching algorithms for bipartite networks with fixed-size caches or elastic leased caches subject to time-average budget constraints.
We prove that the proposed optimistic learning caching policies can achieve sub-zero performance loss (regret) for perfect predictions, and maintain the best achievable regret bound $O(sqrt T)$ even for arbitrary-bad predictions.
arXiv Detail & Related papers (2022-02-22T00:04:30Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Applications of Differential Privacy in Social Network Analysis: A
Survey [60.696428840516724]
Differential privacy is effective in sharing information and preserving privacy with a strong guarantee.
Social network analysis has been extensively adopted in many applications, opening a new arena for the application of differential privacy.
arXiv Detail & Related papers (2020-10-06T19:06:03Z) - A Survey of Deep Learning for Data Caching in Edge Network [1.9798034349981157]
This paper summarizes the utilization of deep learning for data caching in edge network.
We first outline the typical research topics in content caching and formulate a taxonomy based on network hierarchical structure.
Then, a number of key types of deep learning algorithms are presented, ranging from supervised learning to unsupervised learning as well as reinforcement learning.
arXiv Detail & Related papers (2020-08-17T12:02:32Z) - Reinforcement Learning for Caching with Space-Time Popularity Dynamics [61.55827760294755]
caching is envisioned to play a critical role in next-generation networks.
To intelligently prefetch and store contents, a cache node should be able to learn what and when to cache.
This chapter presents a versatile reinforcement learning based approach for near-optimal caching policy design.
arXiv Detail & Related papers (2020-05-19T01:23:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.