Spectral Features of the Fourth Order Irreducible Correlations in a Monolayer Semiconductor
- URL: http://arxiv.org/abs/2405.01853v1
- Date: Fri, 3 May 2024 04:53:01 GMT
- Title: Spectral Features of the Fourth Order Irreducible Correlations in a Monolayer Semiconductor
- Authors: Jiacheng Tang, Cun-Zheng Ning,
- Abstract summary: We study the correlation of two electrons and two holes (2e2h) using the four-body Bethe-Salpeter equation (4B-BSE)
Surprisingly, we found a rich series of spectral peaks within an energy span of 40 meV below the exciton that has not been seen before.
- Score: 0.9208007322096533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding high-order correlations or multi-particle entities in a many-body system is not only of fundamental importance in condensed matter physics, but also critical for many technological applications. So far, higher-order multi-particle irreducible correlations in semiconductors have not been studied beyond the second-order or two-particle case. In this paper, we study the correlation of two electrons and two holes (2e2h) using the four-body Bethe-Salpeter equation (4B-BSE) and applied to the calculation of the helicity-resolved absorption between the two-body and four-body states for a monolayer MoTe2. Surprisingly, we found a rich series of spectral peaks within an energy span of ~40 meV below the exciton that has not been seen before. To understand the origin of the new spectral peaks, the Feynman diagrams of the 4B BSE are recast into the cluster expansion formalism, allowing us to study the individual effects of selected clusters or correlations of various orders. We found that the irreducible clusters of orders up to the 3rd and their factorized combinations cannot explain the spectral features. Importantly, we found that the 4th order irreducible correlation is necessary and sufficient to explain the new features. The 4th order irreducible correlation corresponds to a four-particle irreducible cluster involving two electrons and two holes, alternatively called quadron or quadruplon. The new 4th order correlation or four-particle entity not only enriches our understanding of many-body correlations but also could provide new mechanism for light emission or absorption for possible new optoelectronic devices.
Related papers
- Enhancing non-classical correlations for light scattered by an ensemble of cold two-level atoms [0.11249583407496219]
We report the enhancement of quantum correlations for biphotons generated via spontaneous four-wave mixing in an ensemble of cold two-level atoms.
This enhancement is based on the filtering of the Rayleigh linear component of the spectrum of the two emitted photons.
arXiv Detail & Related papers (2024-10-30T20:33:26Z) - An attractive way to correct for missing singles excitations in unitary coupled cluster doubles theory [0.0]
We investigate the extent in which missing single excitations can be recovered from low-order perturbations in many-body theory.
Our analysis includes the derivations of finite-order, UCC energy functionals.
We show that augmenting UCCD with these post hoc perturbative corrections can lead to UCCSD-quality results.
arXiv Detail & Related papers (2024-06-13T14:36:15Z) - Entanglement-induced collective many-body interference [62.22849132943891]
We propose an interferometric setting through which N-particle interference can be observed, while any interference of lower orders is strictly suppressed.
We experimentally demonstrate this effect in a four-photon interferometer, where the interference is nonlocal, in principle.
A joint detection of all four photons identifies a high-visibility interference pattern varying as a function of their collective four-particle phase, a genuine four-body property.
arXiv Detail & Related papers (2023-10-12T18:00:02Z) - The Quadruplon in a Monolayer Semiconductor [9.323335139073711]
We present the first experimental evidence for the existence of a four-body irreducible entity, the quadruplon.
In contrast to a bi-exciton which consists of two weakly bound excitons, a quadruplon consists of two electrons and two holes without the presence of an exciton.
arXiv Detail & Related papers (2022-07-26T09:10:33Z) - Generalization of the Tavis-Cummings model for multi-level anharmonic
systems: insights on the second excitation manifold [0.0]
This work contrasts predictions from the Tavis-Cummings (TC) model, in which the material is a collection of two-level systems.
We simplify the brute-force diagonalization of a gigantic $N2times N2$ Hamiltonian.
We find resonant conditions between bipolaritons and anharmonic transitions where two-photon absorption can be enhanced.
arXiv Detail & Related papers (2022-02-03T06:33:42Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Generalization of the Tavis-Cummings model for multi-level anharmonic
systems [0.0]
We study a collective ensemble of identical multi-level anharmonic emitters and their dipolar interaction with a photonic cavity mode.
The permutational properties of the system allow identifying symmetry classified submanifolds in the energy spectrum.
We expect these findings to be applicable in the study of non-linear spectroscopy and chemistry of polaritons.
arXiv Detail & Related papers (2021-01-23T10:40:00Z) - Atomic Spectra in a Six-Level Scheme for Electromagnetically Induced
Transparency and Autler-Townes Splitting in Rydberg Atoms [58.720142291102135]
We investigate electromagnetically induced transparency (EIT) and Autler-Townes splitting in Rydberg rubidium atoms for a six-level excitation scheme.
One radio-frequency field simultaneously couples to two high-laying Rydberg states and results in interesting atomic spectra observed in the EIT lines.
We present two theoretical models for this atomic system, where these two models capture different aspects of the observed spectra.
arXiv Detail & Related papers (2020-09-28T20:32:51Z) - A multiconfigurational study of the negatively charged nitrogen-vacancy
center in diamond [55.58269472099399]
Deep defects in wide band gap semiconductors have emerged as leading qubit candidates for realizing quantum sensing and information applications.
Here we show that unlike single-particle treatments, the multiconfigurational quantum chemistry methods, traditionally reserved for atoms/molecules, accurately describe the many-body characteristics of the electronic states of these defect centers.
arXiv Detail & Related papers (2020-08-24T01:49:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.