論文の概要: Model-based reinforcement learning for protein backbone design
- arxiv url: http://arxiv.org/abs/2405.01983v1
- Date: Fri, 3 May 2024 10:24:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 13:15:51.327086
- Title: Model-based reinforcement learning for protein backbone design
- Title(参考訳): タンパク質バックボーン設計のためのモデルベース強化学習
- Authors: Frederic Renard, Cyprien Courtot, Alfredo Reichlin, Oliver Bent,
- Abstract要約: 我々はAlphaZeroを用いてタンパク質のバックボーンを生成することを提案する。
既存のモンテカルロ木探索(MCTS)フレームワークを,新しいしきい値に基づく報酬と二次目的を取り入れて拡張する。
AlphaZeroは、トップダウンのタンパク質設計タスクにおいて、ベースラインMCTSを100%以上上回っている。
- 参考スコア(独自算出の注目度): 1.7383284836821535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing protein nanomaterials of predefined shape and characteristics has the potential to dramatically impact the medical industry. Machine learning (ML) has proven successful in protein design, reducing the need for expensive wet lab experiment rounds. However, challenges persist in efficiently exploring the protein fitness landscapes to identify optimal protein designs. In response, we propose the use of AlphaZero to generate protein backbones, meeting shape and structural scoring requirements. We extend an existing Monte Carlo tree search (MCTS) framework by incorporating a novel threshold-based reward and secondary objectives to improve design precision. This innovation considerably outperforms existing approaches, leading to protein backbones that better respect structural scores. The application of AlphaZero is novel in the context of protein backbone design and demonstrates promising performance. AlphaZero consistently surpasses baseline MCTS by more than 100% in top-down protein design tasks. Additionally, our application of AlphaZero with secondary objectives uncovers further promising outcomes, indicating the potential of model-based reinforcement learning (RL) in navigating the intricate and nuanced aspects of protein design
- Abstract(参考訳): タンパク質ナノマテリアルを予め定義された形状と特性で設計することは、医療産業に劇的に影響を与える可能性がある。
機械学習(ML)はタンパク質の設計に成功し、高価なウェットラボ実験ラウンドの必要性を減らした。
しかし、最適なタンパク質設計を特定するために、タンパク質の適合性ランドスケープを効率的に探索する際の課題は続いている。
そこで本研究では,AlphaZeroを用いてタンパク質のバックボーンの生成,形状の整合,構造的スコアリングの要件を提案する。
我々は,新しいしきい値に基づく報酬と二次目的を取り入れ,設計精度を向上させることによって,既存のモンテカルロ木探索(MCTS)フレームワークを拡張した。
この革新は既存のアプローチをかなり上回り、構造的スコアをより尊重するタンパク質のバックボーンに繋がる。
AlphaZeroの応用は、タンパク質のバックボーン設計の文脈で新しく、有望な性能を示す。
AlphaZeroは、トップダウンのタンパク質設計タスクにおいて、ベースラインMCTSを100%以上上回っている。
さらに、第2目的のAlphaZeroの応用は、タンパク質設計の複雑でニュアンスな側面をナビゲートするモデルベース強化学習(RL)の可能性を示す、さらなる有望な結果を明らかにする。
関連論文リスト
- Computational Protein Science in the Era of Large Language Models (LLMs) [54.35488233989787]
計算タンパク質科学(Computational protein science)は、タンパク質配列構造-機能パラダイムにおける知識を明らかにすること、および応用を開発することを目的としている。
最近、言語モデル (Language Models, PLM) は、前例のない言語処理と一般化能力のために、AIのマイルストーンとして登場した。
論文 参考訳(メタデータ) (2025-01-17T16:21:18Z) - ProtDAT: A Unified Framework for Protein Sequence Design from Any Protein Text Description [7.198238666986253]
記述型テキスト入力からタンパク質を設計できるde novo微細化フレームワークを提案する。
Prot DATは、タンパク質データの本質的な特性に基づいて、配列とテキストを分離されたエンティティではなく、結合的な全体として統一する。
実験の結果,Prot DATはタンパク質配列生成の最先端性能を実現し,有理性,機能,構造的類似性,妥当性に優れていた。
論文 参考訳(メタデータ) (2024-12-05T11:05:46Z) - ProteinBench: A Holistic Evaluation of Protein Foundation Models [53.59325047872512]
本稿では,タンパク質基盤モデルのための総合評価フレームワークであるProteinBenchを紹介する。
本研究のアプローチは, タンパク質ドメインにおける課題を包括的に包括するタスクの分類学的分類, (ii) 品質, 新規性, 多様性, 堅牢性, および (iii) 様々なユーザ目標から詳細な分析を行い, モデルパフォーマンスの全体的視点を提供する,4つの重要な側面にわたるパフォーマンスを評価するマルチメトリック評価アプローチからなる。
論文 参考訳(メタデータ) (2024-09-10T06:52:33Z) - MSAGPT: Neural Prompting Protein Structure Prediction via MSA Generative Pre-Training [48.398329286769304]
マルチシークエンスアライメント(MSA)は、タンパク質ファミリーの進化的軌道を明らかにする上で重要な役割を担っている。
MSAGPTは、低MSA状態下でのMSA生成前訓練を通じてタンパク質構造予測を促進する新しいアプローチである。
論文 参考訳(メタデータ) (2024-06-08T04:23:57Z) - Functional Geometry Guided Protein Sequence and Backbone Structure
Co-Design [12.585697288315846]
本稿では,自動検出機能部位に基づくタンパク質配列と構造を共同設計するモデルを提案する。
NAEProは、全シーケンスでグローバルな相関を捉えることができる、注目層と同変層のインターリービングネットワークによって駆動される。
実験結果から,本モデルは全競技種の中で,最高アミノ酸回収率,TMスコア,最低RMSDを実現していることがわかった。
論文 参考訳(メタデータ) (2023-10-06T16:08:41Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Deep Generative Modeling for Protein Design [0.0]
ディープラーニングアプローチは、画像分類や自然言語処理などの分野で画期的な成果を上げている。
タンパク質の遺伝子モデルが開発され、既知のタンパク質配列を全て含む、特定のタンパク質ファミリーをモデル化する、または個々のタンパク質のダイナミクスを外挿する。
本稿では、タンパク質のモデリングに最も成功した5種類の生成モデルについて論じ、ガイドされたタンパク質設計のためのフレームワークを提供する。
論文 参考訳(メタデータ) (2021-08-31T14:38:26Z) - Mimetic Neural Networks: A unified framework for Protein Design and
Folding [10.210871872870735]
我々は新しいグラフミメティックニューラルネットワークMimNetを導入し、タンデムの構造と設計の問題を解決する可逆的アーキテクチャを構築することができることを示す。
タンパク質の折り畳みに関する最近のアーキテクチャを考えると,タンパク質の集合を用いて,タンパク質設計における技術結果の状態を改善することができることを示す。
論文 参考訳(メタデータ) (2021-02-07T18:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。