HoloGS: Instant Depth-based 3D Gaussian Splatting with Microsoft HoloLens 2
- URL: http://arxiv.org/abs/2405.02005v1
- Date: Fri, 3 May 2024 11:08:04 GMT
- Title: HoloGS: Instant Depth-based 3D Gaussian Splatting with Microsoft HoloLens 2
- Authors: Miriam Jäger, Theodor Kapler, Michael Feßenbecker, Felix Birkelbach, Markus Hillemann, Boris Jutzi,
- Abstract summary: We leverage the capabilities of the Microsoft HoloLens 2 for instant 3D Gaussian Splatting.
We present HoloGS, a novel workflow utilizing HoloLens sensor data, which bypasses the need for pre-processing steps.
We evaluate our approach on two self-captured scenes: An outdoor scene of a cultural heritage statue and an indoor scene of a fine-structured plant.
- Score: 1.1874952582465603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the fields of photogrammetry, computer vision and computer graphics, the task of neural 3D scene reconstruction has led to the exploration of various techniques. Among these, 3D Gaussian Splatting stands out for its explicit representation of scenes using 3D Gaussians, making it appealing for tasks like 3D point cloud extraction and surface reconstruction. Motivated by its potential, we address the domain of 3D scene reconstruction, aiming to leverage the capabilities of the Microsoft HoloLens 2 for instant 3D Gaussian Splatting. We present HoloGS, a novel workflow utilizing HoloLens sensor data, which bypasses the need for pre-processing steps like Structure from Motion by instantly accessing the required input data i.e. the images, camera poses and the point cloud from depth sensing. We provide comprehensive investigations, including the training process and the rendering quality, assessed through the Peak Signal-to-Noise Ratio, and the geometric 3D accuracy of the densified point cloud from Gaussian centers, measured by Chamfer Distance. We evaluate our approach on two self-captured scenes: An outdoor scene of a cultural heritage statue and an indoor scene of a fine-structured plant. Our results show that the HoloLens data, including RGB images, corresponding camera poses, and depth sensing based point clouds to initialize the Gaussians, are suitable as input for 3D Gaussian Splatting.
Related papers
- GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
3D Gaussian Splatting (3DGS) allows for the compact encoding of both 3D geometry and scene appearance with its spatial features.
We propose distilling dense keypoint descriptors into 3DGS to improve the model's spatial understanding.
Our approach surpasses state-of-the-art Neural Render Pose (NRP) methods, including NeRFMatch and PNeRFLoc.
arXiv Detail & Related papers (2024-09-24T23:18:32Z) - Implicit-Zoo: A Large-Scale Dataset of Neural Implicit Functions for 2D Images and 3D Scenes [65.22070581594426]
"Implicit-Zoo" is a large-scale dataset requiring thousands of GPU training days to facilitate research and development in this field.
We showcase two immediate benefits as it enables to: (1) learn token locations for transformer models; (2) directly regress 3D cameras poses of 2D images with respect to NeRF models.
This in turn leads to an improved performance in all three task of image classification, semantic segmentation, and 3D pose regression, thereby unlocking new avenues for research.
arXiv Detail & Related papers (2024-06-25T10:20:44Z) - DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction [70.65250036489128]
3D semantic occupancy prediction aims to obtain 3D fine-grained geometry and semantics of the surrounding scene.
We propose an object-centric representation to describe 3D scenes with sparse 3D semantic Gaussians.
GaussianFormer achieves comparable performance with state-of-the-art methods with only 17.8% - 24.8% of their memory consumption.
arXiv Detail & Related papers (2024-05-27T17:59:51Z) - Enhanced 3D Urban Scene Reconstruction and Point Cloud Densification using Gaussian Splatting and Google Earth Imagery [19.67372661944804]
We construct a 3D Gaussian Splatting model of the Waterloo region centered on the University of Waterloo.
We are able to achieve view-synthesis results far exceeding previous 3D view-synthesis results based on neural radiance fields.
arXiv Detail & Related papers (2024-05-17T18:00:07Z) - Z-Splat: Z-Axis Gaussian Splatting for Camera-Sonar Fusion [20.464224937528222]
Differentiable 3D-Gaussian splatting (GS) is emerging as a prominent technique in computer vision and graphics for reconstructing 3D scenes.
GS suffers from a well-known'missing cone' problem, which results in poor reconstruction along the depth axis.
We propose fusion algorithms that simultaneously utilize RGB camera data and sonar data.
arXiv Detail & Related papers (2024-04-06T17:23:43Z) - MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements [59.70107451308687]
We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM.
Our method, MM3DGS, addresses the limitations of prior rendering by enabling faster scale awareness, and improved trajectory tracking.
We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit.
arXiv Detail & Related papers (2024-04-01T04:57:41Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
We introduce Semantic Gaussians, a novel open-vocabulary scene understanding approach based on 3D Gaussian Splatting.
Unlike existing methods, we design a versatile projection approach that maps various 2D semantic features into a novel semantic component of 3D Gaussians.
We build a 3D semantic network that directly predicts the semantic component from raw 3D Gaussians for fast inference.
arXiv Detail & Related papers (2024-03-22T21:28:19Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
holistic understanding of urban scenes based on RGB images is a challenging yet important problem.
Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy.
arXiv Detail & Related papers (2024-03-19T13:39:05Z) - Combining HoloLens with Instant-NeRFs: Advanced Real-Time 3D Mobile
Mapping [4.619828919345114]
We train a Neural Radiance Field (NeRF) as a neural scene representation in real-time with the acquired data from the HoloLens.
After the data stream ends, the training is stopped and the 3D reconstruction is initiated, which extracts a point cloud of the scene.
Our method of 3D reconstruction outperforms grid point sampling with NeRFs by multiple orders of magnitude.
arXiv Detail & Related papers (2023-04-27T16:07:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.