Large Multimodal Model based Standardisation of Pathology Reports with Confidence and their Prognostic Significance
- URL: http://arxiv.org/abs/2405.02040v1
- Date: Fri, 3 May 2024 12:19:38 GMT
- Title: Large Multimodal Model based Standardisation of Pathology Reports with Confidence and their Prognostic Significance
- Authors: Ethar Alzaid, Gabriele Pergola, Harriet Evans, David Snead, Fayyaz Minhas,
- Abstract summary: We present a practical approach based on the use of large multimodal models (LMMs) for automatically extracting information from scanned images of pathology reports.
The proposed framework uses two stages of prompting a Large Multimodal Model (LMM) for information extraction and validation.
We show that the estimated confidence is an effective indicator of the accuracy of the extracted information that can be used to select only accurately extracted fields.
- Score: 4.777807873917223
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Pathology reports are rich in clinical and pathological details but are often presented in free-text format. The unstructured nature of these reports presents a significant challenge limiting the accessibility of their content. In this work, we present a practical approach based on the use of large multimodal models (LMMs) for automatically extracting information from scanned images of pathology reports with the goal of generating a standardised report specifying the value of different fields along with estimated confidence about the accuracy of the extracted fields. The proposed approach overcomes limitations of existing methods which do not assign confidence scores to extracted fields limiting their practical use. The proposed framework uses two stages of prompting a Large Multimodal Model (LMM) for information extraction and validation. The framework generalises to textual reports from multiple medical centres as well as scanned images of legacy pathology reports. We show that the estimated confidence is an effective indicator of the accuracy of the extracted information that can be used to select only accurately extracted fields. We also show the prognostic significance of structured and unstructured data from pathology reports and show that the automatically extracted field values significant prognostic value for patient stratification. The framework is available for evaluation via the URL: https://labieb.dcs.warwick.ac.uk/.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Semantic Textual Similarity Assessment in Chest X-ray Reports Using a
Domain-Specific Cosine-Based Metric [1.7802147489386628]
We introduce a novel approach designed specifically for assessing the semantic similarity between generated medical reports and the ground truth.
Our approach is validated, demonstrating its efficiency in assessing domain-specific semantic similarity within medical contexts.
arXiv Detail & Related papers (2024-02-19T07:48:25Z) - Multimodal self-supervised learning for lesion localization [41.7046184109176]
A new method is introduced that takes full sentences from textual reports as the basic units for local semantic alignment.
This approach combines chest X-ray images with their corresponding textual reports, performing contrastive learning at both global and local levels.
arXiv Detail & Related papers (2024-01-03T03:33:48Z) - Controllable Chest X-Ray Report Generation from Longitudinal
Representations [13.151444796296868]
One strategy to speed up reporting is to integrate automated reporting systems.
Previous approaches to automated radiology reporting generally do not provide the prior study as input.
We introduce two novel aspects: (1) longitudinal learning -- we propose a method to align, leverage the current and prior scan information into a joint longitudinal representation which can be provided to the multimodal report generation model; (2) sentence-anatomy dropout -- a training strategy for controllability in which the report generator model is trained to predict only sentences from the original report which correspond to the subset of anatomical regions given as input.
arXiv Detail & Related papers (2023-10-09T17:22:58Z) - C^2M-DoT: Cross-modal consistent multi-view medical report generation
with domain transfer network [67.97926983664676]
We propose a cross-modal consistent multi-view medical report generation with a domain transfer network (C2M-DoT)
C2M-DoT substantially outperforms state-of-the-art baselines in all metrics.
arXiv Detail & Related papers (2023-10-09T02:31:36Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - Automated Labeling of German Chest X-Ray Radiology Reports using Deep
Learning [50.591267188664666]
We propose a deep learning-based CheXpert label prediction model, pre-trained on reports labeled by a rule-based German CheXpert model.
Our results demonstrate the effectiveness of our approach, which significantly outperformed the rule-based model on all three tasks.
arXiv Detail & Related papers (2023-06-09T16:08:35Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - Radiology Report Generation with a Learned Knowledge Base and
Multi-modal Alignment [27.111857943935725]
We present an automatic, multi-modal approach for report generation from chest x-ray.
Our approach features two distinct modules: (i) Learned knowledge base and (ii) Multi-modal alignment.
With the aid of both modules, our approach clearly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-12-30T10:43:56Z) - An Ensemble Approach for Automatic Structuring of Radiology Reports [6.186392239590685]
We present an ensemble method that consolidates the predictions of three models, capturing various attributes of textual information for automatic labeling of sentences.
Our proposed approach significantly outperforms other approaches by achieving 97.1% accuracy.
arXiv Detail & Related papers (2020-10-05T18:11:23Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.