Comparative Analysis of Retrieval Systems in the Real World
- URL: http://arxiv.org/abs/2405.02048v1
- Date: Fri, 3 May 2024 12:30:01 GMT
- Title: Comparative Analysis of Retrieval Systems in the Real World
- Authors: Dmytro Mozolevskyi, Waseem AlShikh,
- Abstract summary: The objective is to evaluate and compare various state-of-the-art methods based on their performance in terms of accuracy and efficiency.
The analysis explores different combinations of technologies, including Azure Cognitive Search Retriever with GPT-4, Pinecone's Canopy framework, Langchain with Pinecone and different language models.
The motivation for this analysis arises from the increasing demand for robust and responsive question-answering systems in various domains.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research paper presents a comprehensive analysis of integrating advanced language models with search and retrieval systems in the fields of information retrieval and natural language processing. The objective is to evaluate and compare various state-of-the-art methods based on their performance in terms of accuracy and efficiency. The analysis explores different combinations of technologies, including Azure Cognitive Search Retriever with GPT-4, Pinecone's Canopy framework, Langchain with Pinecone and different language models (OpenAI, Cohere), LlamaIndex with Weaviate Vector Store's hybrid search, Google's RAG implementation on Cloud VertexAI-Search, Amazon SageMaker's RAG, and a novel approach called KG-FID Retrieval. The motivation for this analysis arises from the increasing demand for robust and responsive question-answering systems in various domains. The RobustQA metric is used to evaluate the performance of these systems under diverse paraphrasing of questions. The report aims to provide insights into the strengths and weaknesses of each method, facilitating informed decisions in the deployment and development of AI-driven search and retrieval systems.
Related papers
- Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1-like reasoning approach is challenging, and researchers have been making various attempts to advance this open area of research.
We present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.
arXiv Detail & Related papers (2024-11-18T16:15:17Z) - Optimizing Retrieval-Augmented Generation with Elasticsearch for Enhanced Question-Answering Systems [2.4299671488193497]
This study aims to improve the accuracy and quality of large-scale language models (LLMs) in answering questions by integrating into the Retrieval Augmented Generation (RAG) framework.
The experiment uses the Stanford Question Answering dataset (SQuAD) version 2.0 as the test dataset.
arXiv Detail & Related papers (2024-10-18T04:17:49Z) - Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents.
We introduce an iterative approach where the search engine generates retrieval results for these RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase.
We adapt this approach to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback.
arXiv Detail & Related papers (2024-10-13T17:53:50Z) - A Knowledge-Centric Benchmarking Framework and Empirical Study for Retrieval-Augmented Generation [4.359511178431438]
Retrieval-Augmented Generation (RAG) enhances generative models by integrating retrieval mechanisms.
Despite its advantages, RAG encounters significant challenges, particularly in effectively handling real-world queries.
This paper proposes a novel RAG benchmark designed to address these challenges.
arXiv Detail & Related papers (2024-09-03T03:31:37Z) - Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - Towards a Search Engine for Machines: Unified Ranking for Multiple Retrieval-Augmented Large Language Models [21.115495457454365]
uRAG is a framework with a unified retrieval engine that serves multiple downstream retrieval-augmented generation (RAG) systems.
We build a large-scale experimentation ecosystem consisting of 18 RAG systems that engage in training and 18 unknown RAG systems that use the uRAG as the new users of the search engine.
arXiv Detail & Related papers (2024-04-30T19:51:37Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
We develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Knowledge Bases.
Our benchmark covers three domains: product search, academic paper search, and queries in precision medicine.
We design a novel pipeline to synthesize realistic user queries that integrate diverse relational information and complex textual properties.
arXiv Detail & Related papers (2024-04-19T22:54:54Z) - End-to-End Open Vocabulary Keyword Search With Multilingual Neural
Representations [7.780766187171571]
We propose a neural ASR-free keyword search model which achieves competitive performance.
We extend this work with multilingual pretraining and detailed analysis of the model.
Our experiments show that the proposed multilingual training significantly improves the model performance.
arXiv Detail & Related papers (2023-08-15T20:33:25Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z) - Neural Entity Linking: A Survey of Models Based on Deep Learning [82.43751915717225]
This survey presents a comprehensive description of recent neural entity linking (EL) systems developed since 2015.
Its goal is to systemize design features of neural entity linking systems and compare their performance to the remarkable classic methods on common benchmarks.
The survey touches on applications of entity linking, focusing on the recently emerged use-case of enhancing deep pre-trained masked language models.
arXiv Detail & Related papers (2020-05-31T18:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.