Optimizing Retrieval-Augmented Generation with Elasticsearch for Enhanced Question-Answering Systems
- URL: http://arxiv.org/abs/2410.14167v1
- Date: Fri, 18 Oct 2024 04:17:49 GMT
- Title: Optimizing Retrieval-Augmented Generation with Elasticsearch for Enhanced Question-Answering Systems
- Authors: Jiajing Chen, Runyuan Bao, Hongye Zheng, Zhen Qi, Jianjun Wei, Jiacheng Hu,
- Abstract summary: This study aims to improve the accuracy and quality of large-scale language models (LLMs) in answering questions by integrating into the Retrieval Augmented Generation (RAG) framework.
The experiment uses the Stanford Question Answering dataset (SQuAD) version 2.0 as the test dataset.
- Score: 2.4299671488193497
- License:
- Abstract: This study aims to improve the accuracy and quality of large-scale language models (LLMs) in answering questions by integrating Elasticsearch into the Retrieval Augmented Generation (RAG) framework. The experiment uses the Stanford Question Answering Dataset (SQuAD) version 2.0 as the test dataset and compares the performance of different retrieval methods, including traditional methods based on keyword matching or semantic similarity calculation, BM25-RAG and TF-IDF- RAG, and the newly proposed ES-RAG scheme. The results show that ES-RAG not only has obvious advantages in retrieval efficiency but also performs well in key indicators such as accuracy, which is 0.51 percentage points higher than TF-IDF-RAG. In addition, Elasticsearch's powerful search capabilities and rich configuration options enable the entire question-answering system to better handle complex queries and provide more flexible and efficient responses based on the diverse needs of users. Future research directions can further explore how to optimize the interaction mechanism between Elasticsearch and LLM, such as introducing higher-level semantic understanding and context-awareness capabilities, to achieve a more intelligent and humanized question-answering experience.
Related papers
- Data Fusion of Synthetic Query Variants With Generative Large Language Models [1.864807003137943]
This work explores the feasibility of using synthetic query variants generated by instruction-tuned Large Language Models in data fusion experiments.
We introduce a lightweight, unsupervised, and cost-efficient approach that exploits principled prompting and data fusion techniques.
Our analysis shows that data fusion based on synthetic query variants is significantly better than baselines with single queries and also outperforms pseudo-relevance feedback methods.
arXiv Detail & Related papers (2024-11-06T12:54:27Z) - Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents.
We introduce an iterative approach where the search engine generates retrieval results for these RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase.
We adapt this approach to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback.
arXiv Detail & Related papers (2024-10-13T17:53:50Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
We propose GenCRF: a Generative Clustering and Reformulation Framework to capture diverse intentions adaptively.
We show that GenCRF achieves state-of-the-art performance, surpassing previous query reformulation SOTAs by up to 12% on nDCG@10.
arXiv Detail & Related papers (2024-09-17T05:59:32Z) - GQE: Generalized Query Expansion for Enhanced Text-Video Retrieval [56.610806615527885]
This paper introduces a novel data-centric approach, Generalized Query Expansion (GQE), to address the inherent information imbalance between text and video.
By adaptively segmenting videos into short clips and employing zero-shot captioning, GQE enriches the training dataset with comprehensive scene descriptions.
GQE achieves state-of-the-art performance on several benchmarks, including MSR-VTT, MSVD, LSMDC, and VATEX.
arXiv Detail & Related papers (2024-08-14T01:24:09Z) - Retrieval with Learned Similarities [2.729516456192901]
State-of-the-art retrieval algorithms have migrated to learned similarities.
We show that Mixture-of-Logits (MoL) can be realized empirically to achieve superior performance on diverse retrieval scenarios.
arXiv Detail & Related papers (2024-07-22T08:19:34Z) - Comparative Analysis of Retrieval Systems in the Real World [0.0]
The objective is to evaluate and compare various state-of-the-art methods based on their performance in terms of accuracy and efficiency.
The analysis explores different combinations of technologies, including Azure Cognitive Search Retriever with GPT-4, Pinecone's Canopy framework, Langchain with Pinecone and different language models.
The motivation for this analysis arises from the increasing demand for robust and responsive question-answering systems in various domains.
arXiv Detail & Related papers (2024-05-03T12:30:01Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - Adaptive REST API Testing with Reinforcement Learning [54.68542517176757]
Current testing tools lack efficient exploration mechanisms, treating all operations and parameters equally.
Current tools struggle when response schemas are absent in the specification or exhibit variants.
We present an adaptive REST API testing technique incorporates reinforcement learning to prioritize operations during exploration.
arXiv Detail & Related papers (2023-09-08T20:27:05Z) - Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for
Semantic Segmentation [68.8204255655161]
We provide the first study on semantic image segmentation and introduce two new approaches: textitSmartAugment and textitSmartSamplingAugment.
SmartAugment uses Bayesian Optimization to search over a rich space of augmentation strategies and achieves a new state-of-the-art performance in all semantic segmentation tasks we consider.
SmartSamplingAugment, a simple parameter-free approach with a fixed augmentation strategy competes in performance with the existing resource-intensive approaches and outperforms cheap state-of-the-art data augmentation methods.
arXiv Detail & Related papers (2021-10-31T13:04:45Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
Generation-Augmented Retrieval (GAR) for answering open-domain questions.
We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy.
GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader.
arXiv Detail & Related papers (2020-09-17T23:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.