論文の概要: Argumentative Large Language Models for Explainable and Contestable Decision-Making
- arxiv url: http://arxiv.org/abs/2405.02079v1
- Date: Fri, 3 May 2024 13:12:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:55:53.287340
- Title: Argumentative Large Language Models for Explainable and Contestable Decision-Making
- Title(参考訳): 説明可能かつ証明可能な意思決定のための代名詞的大規模言語モデル
- Authors: Gabriel Freedman, Adam Dejl, Deniz Gorur, Xiang Yin, Antonio Rago, Francesca Toni,
- Abstract要約: 大規模言語モデル (LLMs) は意思決定において有望な候補である。
それらは、説明可能で競合可能なアウトプットを確実に提供できないため、制限されている。
議論フレームワークを構築するために LLM を利用する手法である 引数 LLM を導入する。
クレーム検証の意思決定タスクにおいて,議論的LLMの有効性を実験的に示す。
- 参考スコア(独自算出の注目度): 13.045050015831903
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The diversity of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them a promising candidate for use in decision-making. However, they are currently limited by their inability to reliably provide outputs which are explainable and contestable. In this paper, we attempt to reconcile these strengths and weaknesses by introducing a method for supplementing LLMs with argumentative reasoning. Concretely, we introduce argumentative LLMs, a method utilising LLMs to construct argumentation frameworks, which then serve as the basis for formal reasoning in decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by the supplemented LLM may be naturally explained to, and contested by, humans. We demonstrate the effectiveness of argumentative LLMs experimentally in the decision-making task of claim verification. We obtain results that are competitive with, and in some cases surpass, comparable state-of-the-art techniques.
- Abstract(参考訳): 大規模言語モデル(LLM)にエンコードされた知識の多様性と、この知識を様々な設定でゼロショットで適用できる能力は、意思決定に使える有望な候補となる。
しかし、現時点では、説明可能で競合可能なアウトプットを確実に提供できないため、制限されている。
本稿では,これらの長所と短所を,議論的推論によるLCMの補足手法を導入して整合化を試みる。
具体的には、議論フレームワークの構築にLLMを利用する手法である議論的LLMを導入し、意思決定における公式な推論の基礎となる。
これらの議論の枠組みと形式的推論の解釈可能な性質は、補足されたLLMによる決定は自然に人間によって説明され、議論される可能性があることを意味する。
クレーム検証の意思決定タスクにおいて,議論的LLMの有効性を実験的に示す。
競争力のある結果が得られ、場合によっては最先端技術に匹敵する結果が得られます。
関連論文リスト
- Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying [0.3659498819753633]
State-of-the-art Large Language Model (LLM) は論理的および数学的推論を行う際にも苦戦している。
本稿では、議論論に関する文献からの批判的質問の概念を利用し、特にトゥールミンの議論モデルに焦点を当てる。
これらの重要な質問を取り入れることで,LLMの推論能力が向上することを示す。
論文 参考訳(メタデータ) (2024-12-19T18:51:30Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Counterfactual and Semifactual Explanations in Abstract Argumentation: Formal Foundations, Complexity and Computation [19.799266797193344]
議論ベースのシステムは、意思決定プロセスをサポートしながら説明責任を欠くことが多い。
対実的・半実的な説明は解釈可能性のテクニックである。
本稿では,制約の弱いArgumentation Frameworkにおいて,逆ファクトおよび半ファクトのクエリを符号化可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T07:27:27Z) - Verification and Refinement of Natural Language Explanations through LLM-Symbolic Theorem Proving [13.485604499678262]
本稿では,Large Language Models(LLMs)とTheorem Provers(TPs)の統合による自然言語説明の検証と改善について検討する。
本稿では, TPとLPMを統合して説明文の生成と定式化を行う, Explanation-Refiner というニューロシンボリック・フレームワークを提案する。
代わりに、TPは説明の論理的妥当性を公式に保証し、その後の改善のためのフィードバックを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-02T15:20:01Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-Thoughting(CoT)プロンプトは、大規模言語モデル(LLM)のための一般的なコンテキスト内学習手法である。
本稿では、教師なし学習を用いて有理数の潜在空間表現を生成するLaRS(Lalatnt Reasoning Skills)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-07T20:36:10Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
論文 参考訳(メタデータ) (2023-11-14T07:13:10Z) - Sentiment Analysis through LLM Negotiations [58.67939611291001]
感情分析の標準的なパラダイムは、単一のLCMに依存して、その決定を1ラウンドで行うことである。
本稿では,感情分析のためのマルチLLMネゴシエーションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-03T12:35:29Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
Inductive Logic Programmingアプローチを用いて、抽象的および構造化された議論フレームワークのアクセシビリティセマンティクスを解釈可能な方法で学習する新しいフレームワークを提案する。
提案手法は既存の議論解法よりも優れており,フォーマルな議論や人間と機械の対話の領域において,新たな研究の方向性が開けることになる。
論文 参考訳(メタデータ) (2023-10-18T20:18:05Z) - Reasoning with Contextual Knowledge and Influence Diagrams [4.111899441919165]
インフルエンス・ダイアグラム(英語版)(ID)は、不確実性の下で決定状況をモデル化するためにベイズ的ネットワークを拡張するよく知られた形式主義である。
このような制限を克服するために、IDと軽量記述論理(DL)ELを補完する。
論文 参考訳(メタデータ) (2020-07-01T15:57:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。