Transformer Models for Quantum Gate Set Tomography
- URL: http://arxiv.org/abs/2405.02097v3
- Date: Wed, 22 Jan 2025 11:20:04 GMT
- Title: Transformer Models for Quantum Gate Set Tomography
- Authors: King Yiu Yu, Aritra Sarkar, Maximilian Rimbach-Russ, Ryoichi Ishihara, Sebastian Feld,
- Abstract summary: Quantum computation represents a promising frontier in the domain of high-performance computing.<n>This study investigates the challenges of manufacturing high-fidelity and scalable quantum processors.
- Score: 1.1528488253382057
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantum computation represents a promising frontier in the domain of high-performance computing, blending quantum information theory with practical applications to overcome the limitations of classical computation. This study investigates the challenges of manufacturing high-fidelity and scalable quantum processors. Quantum gate set tomography (QGST) is a critical method for characterizing quantum processors and understanding their operational capabilities and limitations. This paper introduces Ml4Qgst as a novel approach to QGST by integrating machine learning techniques, specifically utilizing a transformer neural network model. Adapting the transformer model for QGST addresses the computational complexity of modeling quantum systems. Advanced training strategies, including data grouping and curriculum learning, are employed to enhance model performance, demonstrating significant congruence with ground-truth values. We benchmark this training pipeline on the constructed learning model, to successfully perform QGST for 2 and 3 gates on single-qubit and two-qubit systems, with over-rotation error and depolarizing noise estimation with comparable accuracy to pyGSTi. This research marks a pioneering step in applying deep neural networks to the complex problem of quantum gate set tomography, showcasing the potential of machine learning to tackle nonlinear tomography challenges in quantum computing.
Related papers
- Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
We propose a diffusion-based algorithm leveraging the LayerDAG framework to generate new quantum circuits.
Our results demonstrate that the proposed model consistently generates 100% valid quantum circuit outputs.
arXiv Detail & Related papers (2025-04-29T14:10:10Z) - A Survey of Quantum Transformers: Approaches, Advantages, Challenges, and Future Directions [2.5871385953824855]
Quantum Transformer models represent a significant research direction in quantum machine learning (QML)
PQC-based Transformer models are the primary focus of current research.
Quantum Linear Algebra (QLA)-based Transformer models rely on future fault-tolerant quantum computing.
arXiv Detail & Related papers (2025-04-04T05:40:18Z) - Enhancing variational quantum algorithms by balancing training on classical and quantum hardware [1.8377902806196762]
Variational quantum algorithms (VQAs) have the potential to provide a near-term route to quantum utility or advantage.
VQAs have been proposed for a multitude of tasks such as ground-state estimation.
There remain major challenges in its trainability and resource costs on quantum hardware.
arXiv Detail & Related papers (2025-03-20T17:17:58Z) - From Easy to Hard: Tackling Quantum Problems with Learned Gadgets For Real Hardware [0.0]
Reinforcement learning has proven to be a powerful approach, but many limitations remain due to the exponential scaling of the space of possible operations on qubits.
We develop an algorithm that automatically learns composite gates ("$gadgets$") and adds them as additional actions to the reinforcement learning agent to facilitate the search.
We show that with GRL we can find very compact PQCs that improve the error in estimating the ground state of TFIM by up to $107$ fold.
arXiv Detail & Related papers (2024-10-31T22:02:32Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
We introduce the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with machine learning algorithms.
QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model.
arXiv Detail & Related papers (2024-05-18T14:35:57Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
This paper introduces a novel Quantum Mixed-State Attention Network (QMSAN), which integrates the principles of quantum computing with classical machine learning algorithms.
QMSAN model employs a quantum attention mechanism based on mixed states, enabling efficient direct estimation of similarity between queries and keys within the quantum domain.
Our study investigates the model's robustness in different quantum noise environments, showing that QMSAN possesses commendable robustness to low noise.
arXiv Detail & Related papers (2024-03-05T11:29:05Z) - KetGPT -- Dataset Augmentation of Quantum Circuits using Transformers [1.236829197968612]
Quantum algorithms, represented as quantum circuits, can be used as benchmarks for assessing the performance of quantum systems.
Random circuits are, however, not representative benchmarks as they lack the inherent properties of real quantum algorithms.
This research aims to enhance the existing quantum circuit datasets by generating what we refer to as realistic-looking' circuits.
arXiv Detail & Related papers (2024-02-20T20:02:21Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.