論文の概要: Learning Optimal Deterministic Policies with Stochastic Policy Gradients
- arxiv url: http://arxiv.org/abs/2405.02235v1
- Date: Fri, 3 May 2024 16:45:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:16:37.158022
- Title: Learning Optimal Deterministic Policies with Stochastic Policy Gradients
- Title(参考訳): 確率的政策勾配を用いた最適決定論的政策の学習
- Authors: Alessandro Montenegro, Marco Mussi, Alberto Maria Metelli, Matteo Papini,
- Abstract要約: 政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
- 参考スコア(独自算出の注目度): 62.81324245896716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems. They learn stochastic parametric (hyper)policies by either exploring in the space of actions or in the space of parameters. Stochastic controllers, however, are often undesirable from a practical perspective because of their lack of robustness, safety, and traceability. In common practice, stochastic (hyper)policies are learned only to deploy their deterministic version. In this paper, we make a step towards the theoretical understanding of this practice. After introducing a novel framework for modeling this scenario, we study the global convergence to the best deterministic policy, under (weak) gradient domination assumptions. Then, we illustrate how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy. Finally, we quantitatively compare action-based and parameter-based exploration, giving a formal guise to intuitive results.
- Abstract(参考訳): 政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
彼らは行動の空間で探索するか、パラメータの空間で探索することによって、確率的パラメトリック(ハイパー)政治を学ぶ。
しかし、確率的コントローラは、堅牢性、安全性、トレーサビリティの欠如のため、実際的な観点からは望ましくないことが多い。
一般的には、確率的(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,この実践の理論的理解に向けて一歩前進する。
このシナリオをモデル化するための新しいフレームワークを導入した後、(弱)勾配支配仮定の下で、最も優れた決定論的政策へのグローバル収束を研究する。
そこで,本研究では,サンプル複雑性と展開決定性ポリシのトレードオフを最適化するために,学習に使用する探索レベルを調整する方法について解説する。
最後に、アクションベースとパラメータベースの探索を定量的に比較し、直感的な結果に公式な手がかりを与える。
関連論文リスト
- Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
我々はC-PGと呼ばれる探索非依存のアルゴリズムを導入し、このアルゴリズムは(弱)勾配支配仮定の下でのグローバルな最終点収束を保証する。
制約付き制御問題に対して,我々のアルゴリズムを数値的に検証し,それらを最先端のベースラインと比較する。
論文 参考訳(メタデータ) (2024-07-15T14:54:57Z) - Policy Gradient with Active Importance Sampling [55.112959067035916]
政策勾配法(PG法)はISの利点を大いに生かし、以前に収集したサンプルを効果的に再利用することができる。
しかし、ISは歴史的サンプルを再重み付けするための受動的ツールとしてRLに採用されている。
我々は、政策勾配のばらつきを減らすために、サンプルを収集する最良の行動ポリシーを模索する。
論文 参考訳(メタデータ) (2024-05-09T09:08:09Z) - Gradient Informed Proximal Policy Optimization [35.22712034665224]
本稿では,PPOアルゴリズムと差別化可能な環境からの解析的勾配を統合した新しいポリシー学習手法を提案する。
アルファ値を適応的に修正することにより、学習中の分析的方針勾配の影響を効果的に管理できる。
提案手法は, 関数最適化, 物理シミュレーション, 交通制御環境など, 様々なシナリオにおいて, ベースラインアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2023-12-14T07:50:21Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - $K$-Nearest-Neighbor Resampling for Off-Policy Evaluation in Stochastic
Control [0.6906005491572401]
歴史的データからポリシーの性能を推定するための,新規な$K$-nearest 隣人パラメトリック手法を提案する。
私たちの分析は、ほとんどのアプリケーションで一般的なプラクティスであるように、エピソード全体のサンプリングを可能にします。
他のOPE手法と比較して、我々のアルゴリズムは最適化を必要とせず、木に基づく近接探索と並列化によって効率的に実装することができ、環境のダイナミクスのパラメトリックモデルを明示的に仮定することはない。
論文 参考訳(メタデータ) (2023-06-07T23:55:12Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
本論文は,事前収集した観測値を利用して最適な個別化決定規則を学習するオフライン政策学習について検討する。
既存の政策学習法は、一様重なりの仮定、すなわち、全ての個々の特性に対する全ての作用を探索する正当性は、境界を低くしなければならない。
我々は,点推定の代わりに低信頼度境界(LCB)を最適化する新しいアルゴリズムであるPPLを提案する。
論文 参考訳(メタデータ) (2022-12-19T22:43:08Z) - Policy Gradient Method For Robust Reinforcement Learning [23.62008807533706]
本稿では,モデルミスマッチ下での頑健な強化学習のための大域的最適性保証と複雑性解析を用いた最初のポリシー勾配法を開発した。
提案手法は, 直接的政策パラメータ化の下で, 大域的最適勾配に収束することを示す。
次に、我々の方法論を一般のモデルフリー設定に拡張し、ロバストなパラメトリックポリシークラスと値関数を設計する。
論文 参考訳(メタデータ) (2022-05-15T17:35:17Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIACは、批評家の非線形関数近似を可能にするアクター批判手法である。
特定の仮定の下では、学習者は$o(poly(d))$の探索ラウンドで最適に近い方針を見つける。
我々は,この適応を経験的に評価し,線形手法に触発された前処理よりも優れることを示す。
論文 参考訳(メタデータ) (2021-03-22T03:16:33Z) - Batch Reinforcement Learning with a Nonparametric Off-Policy Policy
Gradient [34.16700176918835]
オフライン強化学習は、より良いデータ効率を約束する。
現在の非政治政策勾配法は、高いバイアスまたは高い分散に悩まされ、しばしば信頼できない見積もりを提供する。
閉形式で解ける非パラメトリックベルマン方程式を提案する。
論文 参考訳(メタデータ) (2020-10-27T13:40:06Z) - A Nonparametric Off-Policy Policy Gradient [32.35604597324448]
強化学習(RL)アルゴリズムは、最近の顕著な成功にもかかわらず、高いサンプリング複雑性に悩まされている。
オフポリシーアルゴリズムの一般的なサンプル効率に基づいて構築する。
提案手法は,現状の政策勾配法よりもサンプル効率がよいことを示す。
論文 参考訳(メタデータ) (2020-01-08T10:13:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。