CNN-Based Equalization for Communications: Achieving Gigabit Throughput with a Flexible FPGA Hardware Architecture
- URL: http://arxiv.org/abs/2405.02323v1
- Date: Mon, 22 Apr 2024 09:13:47 GMT
- Title: CNN-Based Equalization for Communications: Achieving Gigabit Throughput with a Flexible FPGA Hardware Architecture
- Authors: Jonas Ney, Christoph Füllner, Vincent Lauinger, Laurent Schmalen, Sebastian Randel, Norbert Wehn,
- Abstract summary: We present a high-performance FPGA implementation of an ANN-based equalizer, which meets the throughput requirements of modern optical communication systems.
The implementation is based on a cross-layer design approach featuring optimizations from the algorithm down to the hardware architecture.
The corresponding FPGA implementation achieves a throughput of more than 40 GBd, outperforming a high-performance graphics processing unit.
- Score: 6.081142345739704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To satisfy the growing throughput demand of data-intensive applications, the performance of optical communication systems increased dramatically in recent years. With higher throughput, more advanced equalizers are crucial, to compensate for impairments caused by inter-symbol interference (ISI). The latest research shows that artificial neural network (ANN)-based equalizers are promising candidates to replace traditional algorithms for high-throughput communications. On the other hand, not only throughput but also flexibility is a main objective of beyond-5G and 6G communication systems. A platform that is able to satisfy the strict throughput and flexibility requirements of modern communication systems are field programmable gate arrays (FPGAs). Thus, in this work, we present a high-performance FPGA implementation of an ANN-based equalizer, which meets the throughput requirements of modern optical communication systems. Further, our architecture is highly flexible since it includes a variable degree of parallelism (DOP) and therefore can also be applied to low-cost or low-power applications which is demonstrated for a magnetic recording channel. The implementation is based on a cross-layer design approach featuring optimizations from the algorithm down to the hardware architecture, including a detailed quantization analysis. Moreover, we present a framework to reduce the latency of the ANN-based equalizer under given throughput constraints. As a result, the bit error ratio (BER) of our equalizer for the optical fiber channel is around four times lower than that of a conventional one, while the corresponding FPGA implementation achieves a throughput of more than 40 GBd, outperforming a high-performance graphics processing unit (GPU) by three orders of magnitude for a similar batch size.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community.
We propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer.
arXiv Detail & Related papers (2024-07-17T18:38:48Z) - Check-Agnosia based Post-Processor for Message-Passing Decoding of Quantum LDPC Codes [3.4602940992970908]
We introduce a new post-processing algorithm with a hardware-friendly orientation, providing error correction performance competitive to the state-of-the-art techniques.
We show that latency values close to one microsecond can be obtained on the FPGA board, and provide evidence that much lower latency values can be obtained for ASIC implementations.
arXiv Detail & Related papers (2023-10-23T14:51:22Z) - Unsupervised ANN-Based Equalizer and Its Trainable FPGA Implementation [5.487336551142519]
We present a novel ANN-based, unsupervised equalizer and its trainable field programmable gate array (FPGA) implementation.
As a first step towards a practical communication system, we design an efficient FPGA implementation of our proposed algorithm, which achieves a throughput in the order of Gbit/s.
arXiv Detail & Related papers (2023-04-14T08:17:05Z) - A Hybrid Approach combining ANN-based and Conventional Demapping in
Communication for Efficient FPGA-Implementation [6.072680828922663]
Autoencoder (AE) refers to the concept of replacing parts of the transmitter and receiver by artificial neural networks (ANNs)
We propose a novel approach for efficient ANN-based remapping on FPGAs, which combines the adaptability of the AE with the efficiency of conventional demapping algorithms.
Our work opens a door for the practical application of ANN-based communication algorithms on FPGAs.
arXiv Detail & Related papers (2023-04-11T07:58:01Z) - Implementing Neural Network-Based Equalizers in a Coherent Optical
Transmission System Using Field-Programmable Gate Arrays [3.1543509940301946]
We show the offline FPGA realization of both recurrent and feedforward neural network (NN)-based equalizers for nonlinearity compensation in coherent optical transmission systems.
The main results are divided into three parts: a performance comparison, an analysis of how activation functions are implemented, and a report on the complexity of the hardware.
arXiv Detail & Related papers (2022-12-09T07:28:45Z) - FPGA-based AI Smart NICs for Scalable Distributed AI Training Systems [62.20308752994373]
We propose a new smart network interface card (NIC) for distributed AI training systems using field-programmable gate arrays (FPGAs)
Our proposed FPGA-based AI smart NIC enhances overall training performance by 1.6x at 6 nodes, with an estimated 2.5x performance improvement at 32 nodes, compared to the baseline system using conventional NICs.
arXiv Detail & Related papers (2022-04-22T21:57:00Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
nonlinear beamforming filters can significantly outperform linear approaches in stationary scenarios with massive connectivity.
One of the main challenges comes from the real-time implementation of these algorithms.
This paper explores the acceleration of APSM-based algorithms through massive parallelization.
arXiv Detail & Related papers (2022-01-13T15:20:45Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - GraphACT: Accelerating GCN Training on CPU-FPGA Heterogeneous Platforms [1.2183405753834562]
Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art deep learning model for representation learning on graphs.
It is challenging to accelerate training of GCNs due to substantial and irregular data communication.
We design a novel accelerator for training GCNs on CPU-FPGA heterogeneous systems.
arXiv Detail & Related papers (2019-12-31T21:19:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.