Combined Compromise for Ideal Solution (CoCoFISo): a multi-criteria decision-making based on the CoCoSo method algorithm
- URL: http://arxiv.org/abs/2405.02324v1
- Date: Mon, 22 Apr 2024 09:19:33 GMT
- Title: Combined Compromise for Ideal Solution (CoCoFISo): a multi-criteria decision-making based on the CoCoSo method algorithm
- Authors: Rôlin Gabriel Rasoanaivo, Morteza Yazdani, Pascale Zaraté, Amirhossein Fateh,
- Abstract summary: The authors examined the applicability of the CoCoFISo method (improved version of combined compromise solution) by a real case study in a university campus.
Our research finding indicates that CoCoSo is an applied method that has been developed to solve complex multi variable assessment problems.
CoCoFISo can improve the shortages observed in CoCoSo and deliver stable outcomes compared to other developed tools.
- Score: 3.8586071087712033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Each decision-making tool should be tested and validated in real case studies to be practical and fit to global problems. The application of multi-criteria decision-making methods (MCDM) is currently a trend to rank alternatives. In the literature, there are several multi-criteria decision-making methods according to their classification. During our experimentation on the Combined Compromise Solution (CoCoSo) method, we encountered its limits for real cases. The authors examined the applicability of the CoCoFISo method (improved version of combined compromise solution), by a real case study in a university campus and compared the obtained results to other MCDMs such as Preference Ranking Organisation Method for Enrichment Evaluations (PROMETHEE), Weighted Sum Method (WSM) and Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS). Our research finding indicates that CoCoSo is an applied method that has been developed to solve complex multi variable assessment problems, while CoCoFISo can improve the shortages observed in CoCoSo and deliver stable outcomes compared to other developed tools. The findings imply that application of CoCoFISo is suggested to decision makers, experts and researchers while they are facing practical challenges and sensitive questions regarding the utilization of a reliable decision-making method. Unlike many prior studies, the current version of CoCoSo is unique, original and is presented for the first time. Its performance was approved using several strategies and examinations.
Related papers
- Algorithmic Detection of Rank Reversals, Transitivity Violations, and Decomposition Inconsistencies in Multi-Criteria Decision Analysis [0.0]
We present three tests that detect the presence of Rank Reversals, along with their implementation in the Scikit-Criteria library.<n>We also address the complications that arise when implementing these tests for general scenarios and the design considerations we made to handle them.
arXiv Detail & Related papers (2025-07-31T19:31:41Z) - A New Approach for Multicriteria Assessment in the Ranking of Alternatives Using Cardinal and Ordinal Data [0.0]
We propose a novel MCA approach that combines two Virtual Gap Analysis (VGA) models.<n>The VGA framework, rooted in linear programming, is pivotal in the MCA methodology.
arXiv Detail & Related papers (2025-07-10T04:00:48Z) - Take a Step and Reconsider: Sequence Decoding for Self-Improved Neural Combinatorial Optimization [1.1510009152620668]
We present a simple and problem-independent sequence decoding method for self-improved learning.
By modifying the policy to ignore previously sampled sequences, we force it to consider only unseen alternatives.
Our method outperforms previous NCO approaches on the Job Shop Scheduling Problem.
arXiv Detail & Related papers (2024-07-24T12:06:09Z) - POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators.
The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition [70.60872754129832]
First NeurIPS competition on unlearning sought to stimulate the development of novel algorithms.
Nearly 1,200 teams from across the world participated.
We analyze top solutions and delve into discussions on benchmarking unlearning.
arXiv Detail & Related papers (2024-06-13T12:58:00Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
An efficient probabilistic selection based constrained multi-objective EA is proposed, referred to as PSCMOEA.
It comprises novel elements such as (a) an adaptive search bound identification scheme based on the feasibility and convergence status of evaluated solutions.
Numerical experiments are conducted on an extensive range of challenging constrained problems using low evaluation budgets to simulate ECMOPs.
arXiv Detail & Related papers (2024-05-22T02:32:58Z) - Optimal Baseline Corrections for Off-Policy Contextual Bandits [61.740094604552475]
We aim to learn decision policies that optimize an unbiased offline estimate of an online reward metric.
We propose a single framework built on their equivalence in learning scenarios.
Our framework enables us to characterize the variance-optimal unbiased estimator and provide a closed-form solution for it.
arXiv Detail & Related papers (2024-05-09T12:52:22Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - The Statistical Complexity of Interactive Decision Making [126.04974881555094]
We provide a complexity measure, the Decision-Estimation Coefficient, that is proven to be both necessary and sufficient for sample-efficient interactive learning.
A unified algorithm design principle, Estimation-to-Decisions (E2D), transforms any algorithm for supervised estimation into an online algorithm for decision making.
arXiv Detail & Related papers (2021-12-27T02:53:44Z) - USCO-Solver: Solving Undetermined Stochastic Combinatorial Optimization
Problems [9.015720257837575]
We consider the regression between spaces, aiming to infer high-quality optimization solutions from samples of input-solution pairs.
For learning foundations, we present learning-error analysis under the PAC-Bayesian framework.
We obtain highly encouraging experimental results for several classic problems on both synthetic and real-world datasets.
arXiv Detail & Related papers (2021-07-15T17:59:08Z) - Modularity in Reinforcement Learning via Algorithmic Independence in
Credit Assignment [79.5678820246642]
We show that certain action-value methods are more sample efficient than policy-gradient methods on transfer problems that require only sparse changes to a sequence of previously optimal decisions.
We generalize the recently proposed societal decision-making framework as a more granular formalism than the Markov decision process.
arXiv Detail & Related papers (2021-06-28T21:29:13Z) - A Hybrid APM-CPGSO Approach for Constraint Satisfaction Problem Solving:
Application to Remote Sensing [2.6641834518599308]
Constraint satisfaction problem (CSP) has been actively used for modeling and solving a wide range of complex real-world problems.
Existing complete methods for problem-solving are in most cases unsuitable.
This paper proposes a novel approach that combines incomplete and complete CSP methods for problem-solving.
arXiv Detail & Related papers (2021-06-06T22:05:22Z) - Multicriteria Group Decision-Making Under Uncertainty Using Interval
Data and Cloud Models [0.0]
We propose a multicriteria group decision making (MCGDM) algorithm under uncertainty where data is collected as intervals.
The proposed MCGDM algorithm aggregates the data, determines the optimal weights for criteria and ranks alternatives with no further input.
The proposed MCGDM algorithm is implemented on a case study of a cybersecurity problem to illustrate its feasibility and effectiveness.
arXiv Detail & Related papers (2020-12-01T06:34:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.