A Comprehensive Approach to Carbon Dioxide Emission Analysis in High Human Development Index Countries using Statistical and Machine Learning Techniques
- URL: http://arxiv.org/abs/2405.02340v1
- Date: Wed, 1 May 2024 21:00:02 GMT
- Title: A Comprehensive Approach to Carbon Dioxide Emission Analysis in High Human Development Index Countries using Statistical and Machine Learning Techniques
- Authors: Hamed Khosravi, Ahmed Shoyeb Raihan, Farzana Islam, Ashish Nimbarte, Imtiaz Ahmed,
- Abstract summary: It's imperative to forecast CO2 emission trends and classify countries based on their emission patterns to effectively mitigate worldwide carbon emission.
This paper presents an in-depth comparative study on the determinants of CO2 emission in twenty countries with high Human Development Index (HDI), exploring factors related to economy, environment, energy use, and renewable resources over a span of 25 years.
- Score: 4.106914713812204
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reducing Carbon dioxide (CO2) emission is vital at both global and national levels, given their significant role in exacerbating climate change. CO2 emission, stemming from a variety of industrial and economic activities, are major contributors to the greenhouse effect and global warming, posing substantial obstacles in addressing climate issues. It's imperative to forecast CO2 emission trends and classify countries based on their emission patterns to effectively mitigate worldwide carbon emission. This paper presents an in-depth comparative study on the determinants of CO2 emission in twenty countries with high Human Development Index (HDI), exploring factors related to economy, environment, energy use, and renewable resources over a span of 25 years. The study unfolds in two distinct phases: initially, statistical techniques such as Ordinary Least Squares (OLS), fixed effects, and random effects models are applied to pinpoint significant determinants of CO2 emission. Following this, the study leverages supervised and unsupervised machine learning (ML) methods to further scrutinize and understand the factors influencing CO2 emission. Seasonal AutoRegressive Integrated Moving Average with eXogenous variables (SARIMAX), a supervised ML model, is first used to predict emission trends from historical data, offering practical insights for policy formulation. Subsequently, Dynamic Time Warping (DTW), an unsupervised learning approach, is used to group countries by similar emission patterns. The dual-phase approach utilized in this study significantly improves the accuracy of CO2 emission predictions while also providing a deeper insight into global emission trends. By adopting this thorough analytical framework, nations can develop more focused and effective carbon reduction policies, playing a vital role in the global initiative to combat climate change.
Related papers
- Enhancing Carbon Emission Reduction Strategies using OCO and ICOS data [40.572754656757475]
We propose a methodology to enhance local CO2 monitoring by integrating satellite data from the Orbiting Carbon Observatories (OCO-2 and OCO-3) with ground level observations from the Integrated Carbon Observation System (ICOS) and weather data from the ECMWF Reanalysis v5 (ERA5)
We employ weighted K-nearest neighbor (KNN) with machine learning models to predict ground level CO2 from satellite measurements, achieving a Root Mean Squared Error of 3.92 ppm.
arXiv Detail & Related papers (2024-10-05T21:23:58Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Reconstructing Global Daily CO2 Emissions via Machine Learning [4.347253343430851]
We extended a global daily CO2 emissions dataset backwards in time to 1970 using machine learning algorithm.
Variation in daily CO2 emissions far exceeded the smoothed seasonal variations.
The long-term time series spanning over fifty years of global daily CO2 emissions reveals an increasing trend in emissions due to extreme temperature events.
arXiv Detail & Related papers (2024-07-29T14:44:14Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
We evaluate the CO2 emissions of well-known large language models, which have an especially high carbon footprint due to their significant amount of model parameters.
We argue for the training of LLMs in a way that is responsible and sustainable by suggesting measures for reducing carbon emissions.
arXiv Detail & Related papers (2024-04-01T15:01:45Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Carbon Emission Prediction on the World Bank Dataset for Canada [0.9256577986166795]
This paper provides the methods for predicting carbon emissions (CO2 emissions) for the next few years.
The predictions are based on data from the past 50 years.
This dataset contains CO2 emissions (metric tons per capita) of all the countries from 1960 to 2018.
arXiv Detail & Related papers (2022-11-26T07:04:52Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Near Real-time CO$_2$ Emissions Based on Carbon Satellite And Artificial
Intelligence [20.727982405167758]
We propose an integral AI based pipeline that contains both a data retrieval algorithm and a two-step data-driven solution.
First, the data retrieval algorithm can generate effective datasets from multi-modal data including carbon satellite, the information of carbon sources, and several environmental factors.
Second, the two-step data-driven solution that applies the powerful representation of deep learning techniques to learn to quantify anthropogenic CO$$ emissions.
arXiv Detail & Related papers (2022-10-11T12:01:32Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
In recent years, companies have increasingly been aiming to both mitigate their environmental impact and adapt to the changing climate context.
This is reported via increasingly exhaustive reports, which cover many types of climate risks and exposures under the umbrella of Environmental, Social, and Governance (ESG)
We present this tool and the methodology that we used to develop it in the present article.
arXiv Detail & Related papers (2020-11-03T21:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.