Unveiling the Role of Artificial Intelligence and Stock Market Growth in Achieving Carbon Neutrality in the United States: An ARDL Model Analysis
- URL: http://arxiv.org/abs/2412.16166v1
- Date: Wed, 04 Dec 2024 17:07:04 GMT
- Title: Unveiling the Role of Artificial Intelligence and Stock Market Growth in Achieving Carbon Neutrality in the United States: An ARDL Model Analysis
- Authors: Azizul Hakim Rafi, Abdullah Al Abrar Chowdhury, Adita Sultana, Abdulla All Noman,
- Abstract summary: This paper studies the role of advanced technologies in advancing carbon neutrality in the United States between 2021.
Stock Market Growth, ICT use, Gross Domestic Product (GDP), and Population affect CO2 emissions using the STIRPAT model.
- Score: 0.0
- License:
- Abstract: Given the fact that climate change has become one of the most pressing problems in many countries in recent years, specialized research on how to mitigate climate change has been adopted by many countries. Within this discussion, the influence of advanced technologies in achieving carbon neutrality has been discussed. While several studies investigated how AI and Digital innovations could be used to reduce the environmental footprint, the actual influence of AI in reducing CO2 emissions (a proxy measuring carbon footprint) has yet to be investigated. This paper studies the role of advanced technologies in general, and Artificial Intelligence (AI) and ICT use in particular, in advancing carbon neutrality in the United States, between 2021. Secondly, this paper examines how Stock Market Growth, ICT use, Gross Domestic Product (GDP), and Population affect CO2 emissions using the STIRPAT model. After examining stationarity among the variables using a variety of unit root tests, this study concluded that there are no unit root problems across all the variables, with a mixed order of integration. The ARDL bounds test for cointegration revealed that variables in this study have a long-run relationship. Moreover, the estimates revealed from the ARDL model in the short- and long-run indicated that economic growth, stock market capitalization, and population significantly contributed to the carbon emissions in both the short-run and long-run. Conversely, AI and ICT use significantly reduced carbon emissions over both periods. Furthermore, findings were confirmed to be robust using FMOLS, DOLS, and CCR estimations. Furthermore, diagnostic tests indicated the absence of serial correlation, heteroscedasticity, and specification errors and, thus, the model was robust.
Related papers
- From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
Much of this debate has concentrated on direct impact without addressing the significant indirect effects.
This paper examines how the problem of Jevons' Paradox applies to AI, whereby efficiency gains may paradoxically spur increased consumption.
We argue that understanding these second-order impacts requires an interdisciplinary approach, combining lifecycle assessments with socio-economic analyses.
arXiv Detail & Related papers (2025-01-27T22:45:06Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Reporting and Analysing the Environmental Impact of Language Models on the Example of Commonsense Question Answering with External Knowledge [7.419725234099729]
ChatGPT sparked social interest in Large Language Models (LLMs)
LLMs demand substantial computational resources and are very costly to train, both financially and environmentally.
In this study, we infused T5 LLM with external knowledge and fine-tuned the model for Question-Answering task.
arXiv Detail & Related papers (2024-07-24T16:16:16Z) - A Comprehensive Approach to Carbon Dioxide Emission Analysis in High Human Development Index Countries using Statistical and Machine Learning Techniques [4.106914713812204]
It's imperative to forecast CO2 emission trends and classify countries based on their emission patterns to effectively mitigate worldwide carbon emission.
This paper presents an in-depth comparative study on the determinants of CO2 emission in twenty countries with high Human Development Index (HDI), exploring factors related to economy, environment, energy use, and renewable resources over a span of 25 years.
arXiv Detail & Related papers (2024-05-01T21:00:02Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
We evaluate the CO2 emissions of well-known large language models, which have an especially high carbon footprint due to their significant amount of model parameters.
We argue for the training of LLMs in a way that is responsible and sustainable by suggesting measures for reducing carbon emissions.
arXiv Detail & Related papers (2024-04-01T15:01:45Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Joint Study of Above Ground Biomass and Soil Organic Carbon for Total
Carbon Estimation using Satellite Imagery in Scotland [0.0]
Land Carbon verification has long been a challenge in the carbon credit market.
Remote sensing techniques enable new approaches to monitor changes in Above Ground Biomass (AGB) and Soil Organic Carbon (SOC)
arXiv Detail & Related papers (2022-05-08T20:23:30Z) - A Novel GDP Prediction Technique based on Transfer Learning using CO2
Emission Dataset [11.719414585804014]
The most prosperous states are the highest emitters of greenhouse gases (specially, CO2)
This paper reports a novel transfer learning based approach for GDP prediction, which we have termed as Domain Adapted Transfer Learning for GDP Prediction.
Results are comparatively presented considering three well-known regression methods such as Generalized Regression Neural Network, Extreme Learning Machine and Support Vector Regression.
arXiv Detail & Related papers (2020-05-02T15:30:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.