論文の概要: Temporal assessment of malicious behaviors: application to turnout field data monitoring
- arxiv url: http://arxiv.org/abs/2405.02346v1
- Date: Thu, 2 May 2024 15:15:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 20:29:40.616448
- Title: Temporal assessment of malicious behaviors: application to turnout field data monitoring
- Title(参考訳): 悪意行動の時間的評価-フィールドデータ監視への応用
- Authors: Sara Abdellaoui, Emil Dumitrescu, Cédric Escudero, Eric Zamaï,
- Abstract要約: ターンアウト行動の時間的進化から得られた予測に基づいて,サイバー攻撃調査手法を提案する。
これらの予測は、任意の不一致を検出するために取得したフィールドデータと比較される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monitored data collected from railway turnouts are vulnerable to cyberattacks: attackers may either conceal failures or trigger unnecessary maintenance actions. To address this issue, a cyberattack investigation method is proposed based on predictions made from the temporal evolution of the turnout behavior. These predictions are then compared to the field acquired data to detect any discrepancy. This method is illustrated on a collection of real-life data.
- Abstract(参考訳): 列車の停留所から収集された監視データは、サイバー攻撃に対して脆弱である:攻撃者は障害を隠蔽するか、不必要なメンテナンスアクションを引き起こす可能性がある。
この問題に対処するために, ターンアウト行動の時間的変化から得られた予測に基づいて, サイバー攻撃調査手法を提案する。
これらの予測は、任意の不一致を検出するために取得したフィールドデータと比較される。
この方法は実生活データの収集に例証する。
関連論文リスト
- Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations [50.1394620328318]
既存のバックドア攻撃は主にバランスの取れたデータセットに焦点を当てている。
動的データ拡張操作(D$2$AO)という効果的なバックドア攻撃を提案する。
本手法は,クリーンな精度を維持しつつ,最先端の攻撃性能を実現することができる。
論文 参考訳(メタデータ) (2024-10-16T18:44:22Z) - Demystifying Trajectory Recovery From Ash: An Open-Source Evaluation and Enhancement [5.409124675229009]
本研究では, トラジェクショナルリカバリ攻撃をスクラッチから再実装し, 2つのオープンソースデータセット上で評価する。
結果は、一般的な匿名化やアグリゲーション手法にもかかわらず、プライバシリークがまだ存在することを確認した。
ベースライン攻撃に対する一連の強化を設計することで、より強力な攻撃を提案する。
論文 参考訳(メタデータ) (2024-09-23T01:06:41Z) - PSBD: Prediction Shift Uncertainty Unlocks Backdoor Detection [57.571451139201855]
予測シフトバックドア検出(英: Prediction Shift Backdoor Detection、PSBD)は、ディープニューラルネットワークにおけるバックドアサンプルを識別する新しい手法である。
PSBDは興味深い予測シフト(PS)現象によって動機付けられており、クリーンなデータに対する有害なモデルの予測は、しばしば真のラベルから別のラベルへとシフトする。
PSBDは、モデル推論中にドロップアウト層をオン/オフする際の確率値のばらつきである予測シフト不確実性(PSU)を計算することで、バックドアトレーニングサンプルを特定する。
論文 参考訳(メタデータ) (2024-06-09T15:31:00Z) - Anticipated Network Surveillance -- An extrapolated study to predict
cyber-attacks using Machine Learning and Data Analytics [0.0]
本稿では、複数のデータパラメータに基づいて、ネットワークにおける今後の攻撃を予測する新しい手法について論じる。
提案するモデルは,データセットの事前処理とトレーニング,続いてテストフェーズで構成される。
テストフェーズの結果に基づいて、攻撃につながる可能性のあるイベントクラスを抽出したベストモデルが選択される。
論文 参考訳(メタデータ) (2023-12-27T01:09:11Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - It Is All About Data: A Survey on the Effects of Data on Adversarial
Robustness [4.1310970179750015]
逆の例は、攻撃者が意図的にモデルを混乱させてミスを犯すように設計された機械学習モデルへの入力である。
この問題に対処するために、敵の堅牢性の領域は、敵の攻撃の背後にあるメカニズムとこれらの攻撃に対する防御を調査する。
論文 参考訳(メタデータ) (2023-03-17T04:18:03Z) - The Devil's Advocate: Shattering the Illusion of Unexploitable Data
using Diffusion Models [14.018862290487617]
データ保護の摂動に対抗して、慎重に設計された分極処理が可能であることを示す。
AVATARと呼ばれる我々のアプローチは、最近のアベイラビリティーアタックに対して最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-03-15T10:20:49Z) - Temporal Robustness against Data Poisoning [69.01705108817785]
データ中毒は、悪意のあるトレーニングデータを通じて、敵対者が機械学習アルゴリズムの振る舞いを操作する場合を考慮している。
本研究では,攻撃開始時間と攻撃持続時間を測定する2つの新しい指標である耳線と持続時間を用いたデータ中毒の時間的脅威モデルを提案する。
論文 参考訳(メタデータ) (2023-02-07T18:59:19Z) - Certifiers Make Neural Networks Vulnerable to Availability Attacks [70.69104148250614]
私たちは初めて、逆転戦略が敵によって意図的に引き起こされる可能性があることを示します。
いくつかの入力や摂動のために自然に発生する障害に加えて、敵は故意にフォールバックを誘発するために訓練時間攻撃を使用することができる。
我々は2つの新しいアベイラビリティーアタックを設計し、これらの脅威の実用的妥当性を示す。
論文 参考訳(メタデータ) (2021-08-25T15:49:10Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z) - Predictive Business Process Monitoring via Generative Adversarial Nets:
The Case of Next Event Prediction [0.026249027950824504]
本稿では,次の事象予測の問題に対処するための,新たな逆トレーニングフレームワークを提案する。
これは、2人のプレイヤーのゲームで1つのニューラルネットワークをもう1つのニューラルネットワークと対戦させることで機能し、それは地上の真実と区別できない予測につながる。
単純なネットワークアーキテクチャとナイーブな特徴符号化を使用しても、正確さと予測のイヤーラインの両方において、体系的にすべてのベースラインを上回ります。
論文 参考訳(メタデータ) (2020-03-25T08:31:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。