論文の概要: No One-Size-Fits-All Neurons: Task-based Neurons for Artificial Neural Networks
- arxiv url: http://arxiv.org/abs/2405.02369v1
- Date: Fri, 3 May 2024 09:12:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 20:19:44.904052
- Title: No One-Size-Fits-All Neurons: Task-based Neurons for Artificial Neural Networks
- Title(参考訳): ワンサイズ全ニューロン:人工ニューラルネットワークのためのタスクベースニューロン
- Authors: Feng-Lei Fan, Meng Wang, Hang-Cheng Dong, Jianwei Ma, Tieyong Zeng,
- Abstract要約: 人間の脳はタスクベースのニューロンのユーザなので、人工ネットワークの設計はタスクベースのアーキテクチャ設計からタスクベースのニューロン設計に移行できるだろうか?
本稿では,タスクベースニューロンのプロトタイピングのための2段階のフレームワークを提案する。
実験により、提案されたタスクベースのニューロン設計は実現可能であるだけでなく、他の最先端モデルと競合する性能を提供することが示された。
- 参考スコア(独自算出の注目度): 25.30801109401654
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biologically, the brain does not rely on a single type of neuron that universally functions in all aspects. Instead, it acts as a sophisticated designer of task-based neurons. In this study, we address the following question: since the human brain is a task-based neuron user, can the artificial network design go from the task-based architecture design to the task-based neuron design? Since methodologically there are no one-size-fits-all neurons, given the same structure, task-based neurons can enhance the feature representation ability relative to the existing universal neurons due to the intrinsic inductive bias for the task. Specifically, we propose a two-step framework for prototyping task-based neurons. First, symbolic regression is used to identify optimal formulas that fit input data by utilizing base functions such as logarithmic, trigonometric, and exponential functions. We introduce vectorized symbolic regression that stacks all variables in a vector and regularizes each input variable to perform the same computation, which can expedite the regression speed, facilitate parallel computation, and avoid overfitting. Second, we parameterize the acquired elementary formula to make parameters learnable, which serves as the aggregation function of the neuron. The activation functions such as ReLU and the sigmoidal functions remain the same because they have proven to be good. Empirically, experimental results on synthetic data, classic benchmarks, and real-world applications show that the proposed task-based neuron design is not only feasible but also delivers competitive performance over other state-of-the-art models.
- Abstract(参考訳): 生物学的には、脳はあらゆる面で普遍的に機能する単一の種類のニューロンに依存しない。
代わりに、タスクベースのニューロンの高度なデザイナとして機能する。
本研究では,人間の脳がタスクベースのニューロンユーザであるため,人工ネットワーク設計はタスクベースのアーキテクチャ設計からタスクベースのニューロン設計へ移行できるのか,という疑問に対処する。
一つの大きさのニューロンが存在しないため、タスクベースニューロンはタスク固有の誘導バイアスのため、既存の普遍ニューロンと比較して特徴表現能力を高めることができる。
具体的には,タスクベースニューロンをプロトタイピングするための2段階の枠組みを提案する。
第一に、記号回帰は対数、三角関数、指数関数などの基底関数を利用して入力データに適合する最適な公式を特定するために用いられる。
ベクトルに全ての変数を積み重ねるベクトル化記号回帰を導入し、各入力変数を正規化して同じ計算を行い、回帰速度を高速化し、並列計算を容易にし、オーバーフィッティングを回避する。
第2に、獲得した基本式をパラメータ化してパラメータを学習可能とし、ニューロンの集約機能として機能する。
ReLUのような活性化関数とシグモダル関数は、良いことが証明されたため、同じままである。
経験的に、古典的なベンチマークや実世界の応用に関する実験結果から、提案されたタスクベースのニューロン設計は実現可能であるだけでなく、他の最先端モデルと競合する性能をもたらすことが示されている。
関連論文リスト
- Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
ニューロモルフィックコンピューティングはスパイクベースのエネルギー効率の高い通信に依存している。
本研究では, スパイクトレインへのサンプルベースデータの符号化に適した構成を同定するツールを開発した。
WaLiN-GUIはオープンソースとドキュメントが提供されている。
論文 参考訳(メタデータ) (2023-10-25T20:34:08Z) - Neuron to Graph: Interpreting Language Model Neurons at Scale [8.32093320910416]
本稿では,大規模言語モデル内の多数のニューロンにまたがる解釈可能性手法のスケールアップを目的とした,新しい自動化手法を提案する。
我々は、トレーニングしたデータセットからニューロンの振る舞いを自動的に抽出し、解釈可能なグラフに変換する革新的なツールであるNeuron to Graph(N2G)を提案する。
論文 参考訳(メタデータ) (2023-05-31T14:44:33Z) - Emergent Modularity in Pre-trained Transformers [127.08792763817496]
モジュラリティの主な特徴は、ニューロンの機能的特殊化と機能に基づくニューロングループ化である。
事前学習中にモジュラリティがどのように出現するかを調べた結果,モジュール構造が早期に安定していることが判明した。
このことはトランスフォーマーがまずモジュラ構造を構築し、次にきめ細かいニューロン関数を学ぶことを示唆している。
論文 参考訳(メタデータ) (2023-05-28T11:02:32Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
ほとんどの人工ニューラルネットワーク(ANN)では、神経計算は通常すべてのニューロン間で共有される活性化関数に抽象化される。
本稿では,複雑な計算を行うことができる多様なニューロンの集合を実現するために,神経中心パラメータの最適化を提案する。
論文 参考訳(メタデータ) (2023-05-25T11:33:04Z) - Redundancy and Concept Analysis for Code-trained Language Models [5.726842555987591]
コード学習言語モデルは、様々なコードインテリジェンスタスクに非常に効果的であることが証明されている。
計算ボトルネックとメモリ制約のため、多くのソフトウェアエンジニアリングアプリケーションのトレーニングとデプロイが難しい場合がある。
我々は,ソースコードモデルに対する最初のニューロンレベルの解析を行い,潜在表現内でのテクスチエントニューロンの同定を行う。
論文 参考訳(メタデータ) (2023-05-01T15:22:41Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Two-argument activation functions learn soft XOR operations like
cortical neurons [6.88204255655161]
本研究では,基底と円錐状デンドライトに類似した2つの入力引数で正準活性化関数を学習する。
顕著なことに、結果として生じる非線形性はしばしばソフトなXOR関数を生成する。
これらの非線形性を持つネットワークは、一致したパラメータ数を持つ従来のReLU非線形性よりも高速に学習し、性能が向上する。
論文 参考訳(メタデータ) (2021-10-13T17:06:20Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。